已知點P在曲線y=
1
3
x3-x+
2
3
上移動,若經(jīng)過點P的曲線的切線的傾斜角為α,則α的取值范圍是
 
分析:先根據(jù)導數(shù)運算對函數(shù)y=
1
3
x3-x+
2
3
進行求導,再由切線斜率的值等于該點導函數(shù)的值,可求得切線斜率的范圍,進而可得到α的范圍.
解答:解:∵y=
1
3
x3-x+
2
3

∴y'=x2-1
∴tanα=y'=x2-1≥-1
又∵α∈[0,π),
∴α∈[0,
π
2
)∪[
4
,π)

故答案為:[0,
π
2
)∪[
4
,π)
點評:本題主要考查函數(shù)的求導運算和導數(shù)的幾何意義.導數(shù)是高等數(shù)學下放到高中的新內容,是每年高考的熱點問題,一定要好好復習.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點P在曲線y=
4
ex+1
上,α為曲線在點P處的切線的傾斜角,則α的取值范圍是( 。
A、[0,
π
4
B、[
π
4
,
π
2
)
C、(
π
2
,
4
]
D、[
4
,π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P在曲線y=
4ex+1
上,a為曲線在點P處的切線的傾斜角,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P在曲線y=
4
3
ex+1
上,α為曲線在點P處的切線的傾斜角,則α的取值范圍是(  )
A、[0,
π
3
B、[
π
3
,
π
2
)
C、(
π
2
3
]
D、[
3
,π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江蘇二模)在平面直角坐標系xOy中,已知點P在曲線xy=1(x>0)上,點P在x軸上的射影為M.若點P在直線x-y=0的下方,當
OP2
OM-MP
取得最小值時,點P的坐標為
6
-
2
2
,
6
+
2
2
6
-
2
2
6
+
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P在曲線y=
4ex+1
(其中e為自然對數(shù)的底數(shù))上,α為曲線在點P處的切線的傾斜角,則tanα的取值范圍是
 

查看答案和解析>>

同步練習冊答案