精英家教網 > 高中數學 > 題目詳情

【題目】已知f(x)是定義在R上且以2為周期的偶函數,當0≤x≤1時,f(x)=x2.如果函數g(x)=f(x)-(x+m)有兩個零點,則實數m的值為( )

A.2k(k∈Z) B.2k或2k+ (k∈Z)

C.0 D.2k或2k- (k∈Z)

【答案】D

【解析】令g(x)=0,得f(x)=x+m.因為函數f(x)=x2在[0,1]上的兩個端點分別為(0,0),(1,1),所以過這兩點的直線為y=x.當直線y=x+m與f(x)=x2(x∈[0,1])的圖象相切時,與f(x)在x∈(1,2]上的圖象相交,也就是兩個交點,此時g(x)有兩個零點,可求得此時的切線方程為y=x-.根據周期為2,得m=2k或2k- (k∈Z).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數

1)當時,求函數在區(qū)間上的最大值與最小值;

2)若在上存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,直線的參數方程為為參數).它與曲線交于兩點.

(1)求的長;

(2)在以為極點, 軸的正半軸為極軸建立極坐標系,設點的極坐標為,求點到線段中點的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中, 的參數方程為為參數),在以坐標原點為極點, 軸正半軸為極軸的極坐標系中, 的極坐標方程.

)說明是哪種曲線,并將的方程化為普通方程;

有兩個公共點,頂點的極坐標,求線段的長及定點兩點的距離之積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某幾何體的三視圖如圖所示,P是正方形ABCD對角線的交點,GPB的中點.

(1)根據三視圖,畫出該幾何體的直觀圖.

(2)在直觀圖中,①證明:PD∥平面AGC;

②證明:平面PBD⊥平面AGC.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=5x+x-2,g(x)=log5x+x-2的零點分別為x1,x2,則x1+x2的值為________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)判斷并證明函數的奇偶性;

(2)判斷當時函數的單調性,并用定義證明;

(3)若定義域為,解不等式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數方程為為參數),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,得曲線的極坐標方程為 .

(1)化曲線的參數方程為普通方程,化曲線的極坐標方程為直角坐標方程;

(2)直線為參數)過曲線軸負半軸的交點,求與直線平行且與曲線相切的直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1是實數集上的奇函數,求的值;

2用定義證明在實數集上單調遞增;

3值域為,,求的取值范圍.

查看答案和解析>>

同步練習冊答案