【題目】設(shè)函數(shù) ,若函數(shù) 在x=1處與直線 相切.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)求函數(shù) 上的最大值.

【答案】解:(I)f′(x)= -2bx , ∵函數(shù)f(x)在x=1處與直線y=- 相切,
解得
(Ⅱ)由(1)知,f(x)=lnx x2f′(x)= x ,
當(dāng) x≤e時(shí),令f′(x)>0,得 x<1,
f′(x)<0,得1<x≤e, ∴f(x)在[ ,1)上是增加的,
在(1,e]上是減少的, ∴f(x)maxf(1)=- .
【解析】本題主要考查導(dǎo)數(shù)的幾何意義,切線方程以及導(dǎo)數(shù)展示單調(diào)性中的應(yīng)用。(1)求出函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義,根據(jù)函數(shù)在x=1處于直線相切,列出方程組求解即可。(2)求出函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的不等式及性質(zhì),判斷函數(shù)的單調(diào)性,進(jìn)而求出函數(shù)在閉區(qū)間上的最值。
【考點(diǎn)精析】關(guān)于本題考查的導(dǎo)數(shù)的幾何意義和函數(shù)的最大(小)值與導(dǎo)數(shù),需要了解通過圖像,我們可以看出當(dāng)點(diǎn)趨近于時(shí),直線與曲線相切.容易知道,割線的斜率是,當(dāng)點(diǎn)趨近于時(shí),函數(shù)處的導(dǎo)數(shù)就是切線PT的斜率k,即;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題 :方程 表示焦點(diǎn)在 軸上的橢圓,命題 :雙曲線 的離心率 ,若命題 , 中有且只有一個(gè)為真命題,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓Ω: 的離心率為 ,直線l:y=2上的點(diǎn)和橢圓Ω上的點(diǎn)的距離的最小值為1.

(Ⅰ) 求橢圓Ω的方程;
(Ⅱ) 已知橢圓Ω的上頂點(diǎn)為A,點(diǎn)B,C是Ω上的不同于A的兩點(diǎn),且點(diǎn)B,C關(guān)于原點(diǎn)對稱,直線AB,AC分別交直線l于點(diǎn)E,F(xiàn).記直線AC與AB的斜率分別為k1 , k2
①求證:k1k2為定值;
②求△CEF的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以點(diǎn)為圓心的圓過點(diǎn),線段的垂直平分線交圓于點(diǎn),,

(1)求直線的方程; (2)求圓的方程。

(3)設(shè)點(diǎn)在圓上,試探究使的面積為 8 的點(diǎn)共有幾個(gè)?證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)一個(gè)盒子里裝有三張卡片,分別標(biāo)記有數(shù)字,,這三張卡片除標(biāo)記的數(shù)字外完全相同。隨機(jī)有放回地抽取次,每次抽取張,將抽取的卡片上的數(shù)字依次記為,.

)求抽取的卡片上的數(shù)字滿足的概率;

)求抽取的卡片上的數(shù)字,不完全相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DBAC,點(diǎn)M是棱BB1上一點(diǎn).

(1)求證:B1D1平面A1BD;

(2)求證:MDAC;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 函數(shù) 在區(qū)間 上有1個(gè)零點(diǎn); 函數(shù) 圖象與 軸交于不同的兩點(diǎn).若“ ”是假命題,“ ”是真命題,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】祖暅原理:“冪勢既同,則積不容異”,它是中國古代一個(gè)涉及幾何體體積問題,意思是兩個(gè)等高的幾何體,如在同高處的截面積恒相等,則體積相等,設(shè)A,B為兩個(gè)等高的幾何體,p:A,B的體積相等,q:A,B在同高處的截面積不恒相等,根據(jù)祖暅原理可知,q是-p的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

如圖,在四棱錐PABCD中,側(cè)面PAD底面ABCD,側(cè)棱PAPD=,底面ABCD為直角梯形,其中BCAD,ABAD,AD=2AB=2BC=2OAD中點(diǎn).

(Ⅰ)求證:PO平面ABCD;

(Ⅱ)求異面直線PBCD所成角的余弦值;

(Ⅲ)求點(diǎn)A到平面PCD的距離.

查看答案和解析>>

同步練習(xí)冊答案