15.設(shè)f(x)在定義域上可導(dǎo),則$\underset{lim}{△x→0}$$\frac{[f(x)]^{2}-[f(x-△x)]^{2}}{△x}$=( 。
A.f(x)f′(x)B.-f(x)f′(x)C.2f(x)f′(x)D.-2f(x)f′(x)

分析 化簡$\frac{[f(x)]^{2}-[f(x-△x)]^{2}}{△x}$=$\frac{(f(x)+f(x-△x))(f(x)-f(x-△x))}{△x}$,從而解得.

解答 解:$\underset{lim}{△x→0}$$\frac{[f(x)]^{2}-[f(x-△x)]^{2}}{△x}$
=$\underset{lim}{△x→0}$$\frac{(f(x)+f(x-△x))(f(x)-f(x-△x))}{△x}$
=$\underset{lim}{△x→0}$(f(x)+f(x-△x))•$\underset{lim}{△x→0}$$\frac{f(x)-f(x-△x)}{△x}$
=2f(x)f′(x),
故選C.

點(diǎn)評 本題考查了極限的定義及轉(zhuǎn)化思想與整體思想的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=3x-2ln$\frac{|x|}{2}$的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x2-ax+2lnx.
(Ⅰ)若a=2,求曲線y=f(x)在點(diǎn)P(1,f(1))處的切線;
(Ⅱ)若函數(shù)y=f(x)在定義域上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅲ)設(shè)f(x)有兩個(gè)極值點(diǎn)x1,x2,若${x_1}∈(0,\frac{1}{e}]$,且f(x1)≥t+f(x2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知O為三角形ABC內(nèi)一點(diǎn),且滿足$\overrightarrow{OA}$+λ$\overrightarrow{OB}$+(λ-1)$\overrightarrow{OC}$=$\overrightarrow{0}$.若△OAB的面積與△OAC的面積比值為$\frac{1}{3}$,則λ的值為(  )
A.$\frac{3}{2}$B.2C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若$\underset{lim}{n→∞}$an=p,則  ( 。
A.an<pB.an>p
C.an=pD.an與p的大小關(guān)系不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖所示的正數(shù)數(shù)陣中,第一橫行是公差為d的等差數(shù)列,奇數(shù)列均是公比為q1等比數(shù)列,偶數(shù)列均是公比為q2等比數(shù)列,已知a1,1=1,a1,4=7,a4,1=$\frac{1}{8}$,a2,4=2(a1,1+a2,2)則下列結(jié)論中不正確的是( 。
A.d+q1+q2=a2,5
B.a2,1+a2,3+a2,5+…+a2,21=$\frac{441}{2}$
C.a1,2+a3,2+a5,2+…+a21,2=411-1
D.ai,j=$\left\{\begin{array}{l}(2j-1){2^{1-i}},j為正奇數(shù)\\(2j-1){2^{i-1}},j為正偶數(shù)\end{array}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知△ABC是銳角三角形,向量$\overrightarrow{m}$=(cos(A+$\frac{π}{3}$),sin(A+$\frac{π}{3}$)),$\overrightarrow{n}$=(cosB,sinB),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(Ⅰ)求A-B的值;
(Ⅱ)若cosB=$\frac{3}{5}$,AC=8,求BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.為了研究某校的高三市三模的文科數(shù)學(xué)成績,現(xiàn)隨機(jī)抽取了60名學(xué)生的數(shù)學(xué)成績進(jìn)行分析,現(xiàn)將成績按如下方式分為6組,第一組[80,90),第二組[90,100),…,第六組[130,140),得到如圖所示的頻率分布直方圖.
(1)求頻率分布直方圖中a的值;
(2)估計(jì)該校高三年級文科數(shù)學(xué)成績的眾數(shù)和平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)從成績在[110,130)的同學(xué)中用分層抽樣的方法抽取5位同學(xué),并從這5位同學(xué)中任選2人跟數(shù)學(xué)老師參與信息反饋,求選中2位數(shù)學(xué)成績不在同一組的同學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦點(diǎn)為F,上頂點(diǎn)為B,圓O以橢圓C的中心為圓心,半徑等于線段BF的長.
(1)求圓O的標(biāo)準(zhǔn)方程;
(2)過F的直線L與圓O交于A,B兩點(diǎn),問圓O上是否存在點(diǎn)P滿足條件$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$;若存在,請求出直線L的方程,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案