靠在墻角的梯子可看作線段AB(如圖所示),AB的長是5米,這時梯子的下端B距墻根O的距離是3米,現(xiàn)將B沿OB的方向向右移動梯子的下端B,梯子的新位置是A′B′,直至A下落到墻根O為止.設(shè)AA′=x,BB′=y
試建立y關(guān)于x的函數(shù)關(guān)系式,并寫出函數(shù)的定義域.
分析:由勾股定理,在Rt△ABO中算出A0=4(米),從而得到Rt△A'B'O中A'O=(4-x)米,B'0=(3+y)米,根據(jù)
A'O2+B'02=A'B'2建立關(guān)系式,化簡整理即得所求y關(guān)于x的函數(shù)關(guān)系式.
解答:解:在Rt△ABO中,AB=5米,B0=3米,
故A0=
AB2-BO2
=4(米),
在Rt△A'B'O中,A'B'=AB=5米,A'O=AO-A'A=(4-x)米,
而B'0=OB+BB'=(3+y)米
∵A'O2+B'02=A'B'2,
∴(4-x)2+(3+y)2=52=25,
整理得y=
25-(4-x)2
-3=
-x2+8x+9
-3
根據(jù)A'O<AO,得函數(shù)的定義域為(0,4)
即函數(shù)的表達(dá)式為y=
-x2+8x+9
-3,x∈(0,4)
點評:本題給出實際應(yīng)用問題,求y關(guān)于x的函數(shù)關(guān)系式.著重考查了勾股定理和在實際問題中建立數(shù)學(xué)模型等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

同步練習(xí)冊答案