若等差數(shù)列{an}的前n項(xiàng)和為Sn,則S2n-1=(2n-1)an.由類比推理可得:在等比數(shù)列{bn}中,若其前n項(xiàng)的積為Pn,則P2n-1=
 
考點(diǎn):等差數(shù)列的性質(zhì)
專題:規(guī)律型,等差數(shù)列與等比數(shù)列
分析:類比推理可得:在等比數(shù)列{bn}中,若其前n項(xiàng)的積為Pn,則P2n-1=b1…b2n-1=(b12n-1)q1+2+…+2n-2=bn2n-1
解答: 解:因?yàn)榈炔顢?shù)列{an}的前n項(xiàng)和為Sn,則S2n-1=(2n-1)an
所以類比推理可得:在等比數(shù)列{bn}中,若其前n項(xiàng)的積為Pn,則P2n-1=b1…b2n-1=(b12n-1)q1+2+…+2n-2=bn2n-1
故答案為:bn2n-1
點(diǎn)評:類比推理是指依據(jù)兩類數(shù)學(xué)對象的相似性,將已知的一類數(shù)學(xué)對象的性質(zhì)類比遷移到另一類數(shù)學(xué)對象上去.一般步驟:①找出兩類事物之間的相似性或者一致性.②用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個(gè)明確的命題(或猜想).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在一個(gè)邊長為100cm的正方形ABCD中,以A為圓心半徑為90cm做一四分之一圓,分別與AB,AD相交,在圓弧上取一點(diǎn)P,PE垂直BC于E點(diǎn),PF垂直CD于F點(diǎn).
問:當(dāng)∠PAB等于多少時(shí),矩形PECF面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角形的三內(nèi)角A、B、C的對邊為a,b,c,且△ABC的面積為S=
3
2
abccosC
(1)若a=l,b=2,求c的值.
(2)若a=1,且
π
4
≤A≤
π
3
,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=kx(k≠0),且滿足f(x+1)•f(x)=x2+x,
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若函數(shù)f(x)為定義域上的增函數(shù),h(x)=
f(x)+1
f(x)-1
(f(x)≠1),則是否存在實(shí)數(shù)m使得h(x)的定義域和值域都為[m,m+1]?若存在,求出m的值;若不存在,請說明理由;
(Ⅲ)已知g(x)=(2a-1)x2+3x-3-a,若F(x)=f(x+1)f(x)+g(x)在[-1,1]上存在零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在[-1,2)上的增函數(shù),若f(a-1)>f(1-3a),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2
ax2+ax+3
的定義域?yàn)镽,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=cos(2x-
π
3
)+2sin2(x+
π
2
).
(1)求f(x)的最小正周期和對稱軸方程;
(2)當(dāng)x∈[-
π
3
π
4
]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項(xiàng)都是正數(shù),前n項(xiàng)和是Sn,且點(diǎn)(an,2Sn)在函數(shù)y=x2+x的圖象上.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
1
2Sn
,Tn=b1+b2+…+bn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高一年級共有四個(gè)班,在一次數(shù)學(xué)調(diào)研測試后,隨機(jī)地在各班抽取部分學(xué)生進(jìn)行成績分析.各班被抽取的學(xué)生人數(shù)恰好成等差數(shù)列,人數(shù)最少的班被抽取了22人.抽取出來的所有學(xué)生的成績統(tǒng)計(jì)結(jié)果的頻率分直方圖如圖所示,其中120~130(包括120分但不包括130分)分?jǐn)?shù)段的人數(shù)為5人.
(Ⅰ)求各班被抽取的學(xué)生人數(shù)分別為多少人?
(Ⅱ)在抽取的所有學(xué)生中,任取一人,求分?jǐn)?shù)不小于90分的概率.
(Ⅲ)在120~130分的甲、乙等5人中,隨機(jī)抽取3人參加高一數(shù)學(xué)競賽.求恰好含有甲乙中一人的概率.

查看答案和解析>>

同步練習(xí)冊答案