【題目】下列四個結(jié)論中正確的個數(shù)是( ) ①“x2+x﹣2>0”是“x>1”的充分不必要條件
②命題:“x∈R,sinx≤1”的否定是“x0∈R,sinx0>1”.
③“若x= ,則tanx=1,”的逆命題為真命題;
④若f(x)是R上的奇函數(shù),則f(log32)+f(log23)=0.
A.1
B.2
C.3
D.4

【答案】A
【解析】解:對于①,x2+x﹣2>0,解得x<﹣2或x>1,故“x>1”的必要不充分條件,故錯誤, 對于②,命題:“x∈R,sinx≤1”的否定是“x0∈R,sinx0>1”,故正確,
對于③,若x= ,則tanx=1,”的逆命題為“若tanx=1,則x= ,x還可以等于 ,故錯誤,
對于④,f(x)是R上的奇函數(shù),則f(﹣x)=﹣f(x),∵log32= ,∴l(xiāng)og32與log23不是互為相反數(shù),故錯誤.
故選:A.
【考點精析】解答此題的關(guān)鍵在于理解四種命題的相關(guān)知識,掌握原命題:若P則q; 逆命題:若q則p;否命題:若┑P則┑q;逆否命題:若┑q則┑p.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知由正數(shù)組成的等比數(shù)列{an}中,公比q="2," a1·a2·a3·…·a30=245, 則a1·a4·a7·…·a28= ( )
A.25
B.210
C.215
D.220

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=2x﹣1.
(1)求f(3)+f(﹣1);
(2)求f(x)在R上的解析式;
(3)求不等式﹣7≤f(x)≤3的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+ x2在x=﹣1處取得極大值,記g(x)= .程序框圖如圖所示,若輸出的結(jié)果S> ,則判斷框中可以填入的關(guān)于n的判斷條件是(

A.n≤2014?
B.n≤2015?
C.n>2014?
D.n>2015?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cos(2x﹣ )﹣cos2x. (Ⅰ)求f( )的值;
(Ⅱ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為豐富中學生的課余生活,增進中學生之間的交往與學習,某市甲乙兩所中學舉辦一次中學生圍棋擂臺賽.比賽規(guī)則如下,雙方各出3名隊員并預(yù)先排定好出場順序,雙方的第一號選手首先對壘,雙方的勝者留下進行下一局比賽,負者被淘汰出局,由第二號選手挑戰(zhàn)上一局獲勝的選手,依此類推,直到一方的隊員全部被淘汰,另一方算獲勝.假若雙方隊員的實力旗鼓相當(即取勝對手的概率彼此相等) (Ⅰ)在已知乙隊先勝一局的情況下,求甲隊獲勝的概率.
(Ⅱ)記雙方結(jié)束比賽的局數(shù)為ξ,求ξ的分布列并求其數(shù)學期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等腰△ABC中,底邊BC=2 ,| ﹣t |的最小值為 | |,則△ABC的面積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C的頂點在坐標原點,焦點F在x軸的正半軸上,過點F的直線l與拋物線C相交于A、B兩點,且滿足
(1)求拋物線C的標準方程;
(2)若點M在拋物線C的準線上運動,其縱坐標的取值范圍是[﹣1,1],且 ,點N是以線段AB為直徑的圓與拋物線C的準線的一個公共點,求點N的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c
(1)若a,b,c成等比數(shù)列, ,求 的值;
(2)若A,B,C成等差數(shù)列,且b=2,設(shè)A=α,△ABC的周長為l,求l=f(α)的最大值.

查看答案和解析>>

同步練習冊答案