11.設(shè)a=log410,b=log23,c=20.5,則( 。
A.a>c>bB.b>c>aC.a>b>cD.c>b>a

分析 利用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性求解.

解答 解:∵a=log410=$lo{g}_{2}\sqrt{10}$>b=log23>$lo{g}_{2}2\sqrt{2}$=1.5$>\sqrt{2}$,
c=20.5=$\sqrt{2}$,
∴a>b>c.
故選:C.

點(diǎn)評(píng) 本題考查三個(gè)數(shù)的大小的比較,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)點(diǎn)M(x1,f(x1))和點(diǎn)N(x2,f(x2))分別是函數(shù)f(x)=sinx+$\frac{1}{6}$x3和g(x)=x-1圖象上的點(diǎn),且x1≥0,x2≥0,若直線MN∥x軸,則M,N兩點(diǎn)間的距離的最小值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.解不等式組:$\left\{\begin{array}{l}\frac{1}{x}<1\\|{4x-1}|>2\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知不等式ax2+5x+b>0的解集是{x|2<x<3},則不等式bx2-5x+a>0的解集是(-$\frac{1}{2}$,-$\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.非空集A={x|2a+1≤x≤3a-5},B=$\{x|y=\sqrt{(3-x)(x-22)}\}$,則A⊆A∩B的一個(gè)充分不必要條件是( 。
A.1≤a≤9B.6<a<9C.6≤a≤9D.a≤9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,AB=2,BC=1,∠ABC=120°若將△ABC繞直線BC旋轉(zhuǎn)一周,則所形的旋轉(zhuǎn)體的體積是π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若cosα=$\frac{1}{2}$,α∈(0,π),則cos($\frac{π}{2}$-α)=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系中,已知點(diǎn)O(0,0),A(3,0),B(0,3),C(cosα,sinα).
(1)若$\overrightarrow{AC}•\overrightarrow{BC}=-1$,求$\frac{{2{{sin}^2}α+sin2α}}{1+tanα}$的值;
(2)若f(α)=-2cos2α-tsinα-t2+2在$α∈(\frac{π}{2},\frac{3π}{2})$時(shí)有最小值-1,求常數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在矩形ABCD中,AB=2,BC=1,現(xiàn)將△ABC沿對(duì)角線AC折起,使點(diǎn)B到達(dá)點(diǎn)B′的位置,使平面AB′C與平面ACD垂直得到三棱錐B′-ACD,則三棱錐B′-ACD的外接球的表面積為5π.

查看答案和解析>>

同步練習(xí)冊(cè)答案