【題目】在正方體中,異面直線和分別在上底面和下底面上運動,且,現(xiàn)有以下結(jié)論:
①當與所成角為60°時,與所成角為60°;
②當與所成角為60°時,與側(cè)面所成角為30°;
③與所成角的最小值為45°
④與所成角的最大值為90°
其中正確的是( )
A.①③B.②④C.①③④D.②③④
【答案】C
【解析】
根據(jù)異面直線夾角,線面夾角的性質(zhì),依次判斷每個選項:根據(jù)題意得到或,計算夾角得到①正確,與側(cè)面所成角為,②錯誤,當或時,與所成角的最小值為45°,③正確,當或時,與所成角的最大值為90°,④正確,得到答案.
如圖所示:易知為等邊三角形,故和所成角為,故或,
易知,故或,易知為等邊三角形,故與所成角為60°,即與所成角為60°,①正確;
易知為等邊三角形,故與所成角為60°,故或,此時或,易知與平面的夾角為,故與側(cè)面所成角為,②錯誤;
與平面的夾角為,故當或時,與所成角的最小值為45°,③正確;
易知平面,平面,故,當或時,,故與所成角的最大值為90°,④正確.
故選:C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=2,E是CD的中點,現(xiàn)以AE為折痕將△DAE向上折起,D變?yōu)?/span>D',使得平面D'AE⊥平面ABCE.
(1)求證:平面ABD'⊥平面BD'E;
(2)求直線CE與平面BCD'所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高三模擬考試的學(xué)生中隨機抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段[90,100),[100,110),…,[140,150)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
求分數(shù)在[120,130)內(nèi)的頻率,并補全這個頻
率分布直方圖;
統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點
值作為代表,據(jù)此估計本次考試的平均分;
(3)用分層抽樣的方法在分數(shù)段為[110,130)的學(xué)生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2個,求至多有1人在分數(shù)段[120,130)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了增強學(xué)生的記憶力和辨識力,組織了一場類似《最強大腦》的PK賽,兩隊各由4名選手組成,每局兩隊各派一名選手PK,比賽四局.除第三局勝者得2分外,其余各局勝者均得1分,每局的負者得0分.假設(shè)每局比賽A隊選手獲勝的概率均為,且各局比賽結(jié)果相互獨立,比賽結(jié)束時A隊的得分高于B隊的得分的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐中,平面,四邊形是矩形,且,,是線段上的動點,是線段的中點.
(1)求證:平面;
(2)若直線與平面所成角為,
①求線段的長;
②求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線交于兩點.
(1)求直線l的普通方程和曲線的直角坐標方程;
(2)已知點的極坐標為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“三分損益法”是古代中國發(fā)明制定音律時所用的方法,其基本原理是:以一根確定長度的琴弦為基準,取此琴強長度的得到第二根琴弦,第二根琴弦長度的為第三根琴弦,第三根琴弦長度的為第四根琴弦.第四根琴弦長度的為第五根琴弦.琴弦越短,發(fā)出的聲音音調(diào)越高,這五根琴弦發(fā)出的聲音按音調(diào)由低到高分別稱為“官、商、角(jué)、微(zhǐ)、羽”,則“角"和“徵”對應(yīng)的琴弦長度之比為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·石家莊一模)祖暅是南北朝時期的偉大數(shù)學(xué)家,5世紀末提出體積計算原理,即祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任何一個平面所截,如果截面面積都相等,那么這兩個幾何體的體積一定相等.現(xiàn)有以下四個幾何體:圖①是從圓柱中挖去一個圓錐所得的幾何體,圖②、圖③、圖④分別是圓錐、圓臺和半球,則滿足祖暅原理的兩個幾何體為( )
A. ①② B. ①③
C. ②④ D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某兩名高三學(xué)生在連續(xù)9次數(shù)學(xué)測試中的成績(單位:分)進行統(tǒng)計得到折線圖,下面是關(guān)于這兩位同學(xué)的數(shù)學(xué)成績分析.
①甲同學(xué)的成績折線圖具有較好的對稱性,故平均成績?yōu)?30分;
②根據(jù)甲同學(xué)成績折線圖提供的數(shù)據(jù)進行統(tǒng)計,估計該同學(xué)平均成績在區(qū)間內(nèi);
③乙同學(xué)的數(shù)學(xué)成績與測試次號具有比較明顯的線性相關(guān)性,且為正相關(guān);
④乙同學(xué)連續(xù)九次測驗成績每一次均有明顯進步.
其中正確的個數(shù)為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com