點(diǎn)在函數(shù)的圖象上,點(diǎn)N與點(diǎn)M關(guān)于軸對稱且在直線上,則函數(shù)在區(qū)間上   (   )
A.既沒有最大值也沒有最小值B.最小值為-3,無最大值
C.最小值為-3,最大值為9  D.最小值為,無最大值
D
本題考查對稱、點(diǎn)與曲線的關(guān)系及二次函數(shù)相關(guān)知識(shí)。
點(diǎn)在函數(shù),易知點(diǎn),因?yàn)辄c(diǎn)在直線上,故,從而二次函數(shù),其圖像開口向上,對稱軸為直線,在區(qū)間上單調(diào)遞減,區(qū)間上單調(diào)遞增,所以又最小值,最大值無定義,故沒有最大值,選D.
【點(diǎn)評】二次函數(shù)的單調(diào)性要熟練掌握。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是圓上的動(dòng)點(diǎn),定點(diǎn),則
的最大值為    
                                           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)二次函數(shù)f(x)=ax2+bx(a≠0)滿足條件:
①f(-1+x)=f(-1-x);②函數(shù)f(x)的圖象與直線y=x只有一個(gè)公共點(diǎn).
(Ⅰ)求f(x)的解析式;
(Ⅱ)若不等式>(2-tx在t∈[-2,2]時(shí)恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)二次函數(shù)在區(qū)間上單調(diào)遞減,且,則實(shí)數(shù)的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知二次函數(shù)(為常數(shù)).
(1)若函數(shù)是偶函數(shù),求的值;
(2)若,求函數(shù)的最小值;
(3)在(1)的條件下, 滿足的任意正實(shí)數(shù),都有,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)=,則函數(shù)的最小值及對稱軸方程分別為(    )
A.-24,-2015B.24,x=“-2015”C.24,x=“2015”D.-24,x=-2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知二次函數(shù).
(I)若函數(shù)的的圖像經(jīng)過原點(diǎn),且滿足,求實(shí)數(shù)的值.
(II)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共13分)
已知函數(shù)
(1)當(dāng)a=3時(shí),求f(x)的零點(diǎn);
(2)求函數(shù)y=f (x)在區(qū)間[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題


查看答案和解析>>

同步練習(xí)冊答案