【題目】已知橢圓 的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切. 是橢圓的右頂點(diǎn)與上頂點(diǎn),直線與橢圓相交于兩點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)當(dāng)四邊形面積取最大值時(shí),求的值.

【答案】(Ⅰ);(Ⅱ) =2.

【解析】試題分析:(1)利用離心率和直線與圓相切以及的關(guān)系進(jìn)行求解;(2)設(shè),聯(lián)立直線與橢圓方程,得到的橫坐標(biāo),求出點(diǎn)到直線的距離,得到四邊形面積關(guān)于的表達(dá)式,再利用基本不等式進(jìn)行求解.

試題解析:()由題意知: ,

又圓與直線相切, ,

故所求橢圓的方程為

)設(shè),其中,

代入橢圓的方程整理得: ,

又點(diǎn)到直線的距離分別為,

,

所以四邊形的面積為

當(dāng),即當(dāng)時(shí),上式取等號,所以當(dāng)四邊形面積的最大值時(shí),

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,且,設(shè)命題p:函數(shù)上單調(diào)遞減;命題q:函數(shù) 上為增函數(shù),

1)若“pq”為真,求實(shí)數(shù)c的取值范圍

2)若“pq”為假,“pq”為真,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:對任意,不等式恒成立;命題q:存在,使得成立.

(1)p為真命題,求m的取值范圍;

(2)當(dāng),若pq為假,pq為真,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓、拋物線的焦點(diǎn)均在軸上, 的中心和的頂點(diǎn)均為原點(diǎn),平面上四個點(diǎn), , , 中有兩個點(diǎn)在橢圓上,另外兩個點(diǎn)在拋物線上.

(1)求的標(biāo)準(zhǔn)方程;

(2)是否存在直線滿足以下條件:①過的焦點(diǎn);②與交于兩點(diǎn),且以為直徑的圓經(jīng)過原點(diǎn).若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有紅球3個、白球2個、黑球1個,從中任取2個,則互斥而不對立的兩個事件是( )

A. 至少有一個白球;至少有一個紅球 B. 至少有一個白球;紅、黑球各一個

C. 恰有一個白球;一個白球一個黑球 D. 至少有一個白球;都是白球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)采用隨機(jī)模擬的方法估計(jì)一位射箭運(yùn)動員三次射箭恰有兩次命中的概率:先由計(jì)算機(jī)隨機(jī)產(chǎn)生09之間取整數(shù)的隨機(jī)數(shù),指定1,2,3,4,5表示命中,6,7,8,9,0表示不命中,再以三個隨機(jī)數(shù)為一組,代表三次射箭的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

807 966 191 925 271 932 812 458 569 683

489 257 394 027 552 488 730 113 537 741

根據(jù)以上數(shù)據(jù),估計(jì)該運(yùn)動員三次射箭恰好有兩次命中的概率為

A. 0.20 B. 0.25 C. 0.30 D. 0.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱臺ABCD﹣A1B1C1D1中,底面ABCD是平行四邊形,DD1⊥平面ABCD,AB=2AD,AD=A1B1BAD=60°

證明:CC1∥平面A1BD;

求直線CC1與平面ADD1A1所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正三棱柱的底面邊長為2, 是側(cè)棱的中點(diǎn).

1證明:平面平面

2若平面與平面所成銳角的大小為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某投資公司計(jì)劃投資兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,產(chǎn)品的利潤與投資金額的函數(shù)關(guān)系為,產(chǎn)品的利潤與投資金額的函數(shù)關(guān)系為(注:利潤與投資金額單位:萬元).

(1)該公司現(xiàn)有100萬元資金,并計(jì)劃全部投入兩種產(chǎn)品中,其中萬元資金投入產(chǎn)品,試把兩種產(chǎn)品利潤總和表示為的函數(shù),并寫出定義域;

(2)怎樣分配這100萬元資金,才能使公司的利潤總和獲得最大?其最大利潤總和為多少萬元.

查看答案和解析>>

同步練習(xí)冊答案