已知f(x)=ax4+bx2+c的圖象經過點(0,1),且在x=1處的切線方程是y=x-2.
(1)求y=f(x)的解析式;
(2)求y=f(x)的單調遞增區(qū)間.
分析:(1)先根據f(x)的圖象經過點(0,1)求出c,然后根據導數的幾何意義求出函數f(x)在x=1處的導數,從而求出切線的斜率,建立一等量關系,再根據切點在曲線上建立一等式關系,解方程組即可;
(2)首先對f(x)=
x4-
x2+1求導,可得f'(x)=10x
3-9x,令f′(x)>0解之即可求出函數的單調遞增區(qū)間.
解答:解:(1)f(x)=ax
4+bx
2+c的圖象經過點(0,1),則c=1,
f'(x)=4ax
3+2bx,k=f'(1)=4a+2b=1(4分)
切點為(1,-1),則f(x)=ax
4+bx
2+c的圖象經過點(1,-1),
得a+b+c=-1,得a=
,b=-
f(x)=
x4-
x2+1(8分)
(2)f'(x)=10x
3-9x>0,-
<x<0,或x>
單調遞增區(qū)間為(,-
,0),(
,+∞)(12分)
點評:本題考查導數的計算與應用,注意導數計算公式的正確運用與導數與單調性的關系,利用導數研究曲線上某點切線方程,屬于基礎題.