設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意的正整數(shù),都有成立,記?
(I)求數(shù)列的通項(xiàng)公式;
(II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對(duì)任意正整數(shù)都有;
(III)設(shè)數(shù)列的前項(xiàng)和為?已知正實(shí)數(shù)滿足:對(duì)任意正整數(shù)恒成立,求的最小值?
解:(Ⅰ)當(dāng)時(shí),


數(shù)列成等比數(shù)列,其首項(xiàng),公比是

 
(Ⅱ)由(Ⅰ)知

=

當(dāng)
當(dāng)

(Ⅲ)由(Ⅰ)知
一方面,已知恒成立,取n為大于1的奇數(shù)時(shí),設(shè)



>
對(duì)一切大于1的奇數(shù)n恒成立
只對(duì)滿足的正奇數(shù)n成立,矛盾。
另一方面,當(dāng)時(shí),對(duì)一切的正整數(shù)n都有
事實(shí)上,對(duì)任意的正整數(shù)k,有


當(dāng)n為偶數(shù)時(shí),設(shè)
<
當(dāng)n為奇數(shù)時(shí),設(shè)

<
對(duì)一切的正整數(shù)n,都有
綜上所述,正實(shí)數(shù)的最小值為4
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題14分)數(shù)列的首項(xiàng),且

(Ⅰ)求,;
(Ⅱ)判斷數(shù)列是否為等比數(shù)列,并證明你的結(jié)論.
(Ⅲ)求的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列中,)。
(1)求的值;
(2)設(shè),是否存在實(shí)數(shù),使數(shù)列為等差數(shù)列,若存在請(qǐng)求其通項(xiàng),若不存在請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分l4分)已知數(shù)列的前n項(xiàng)和為,正數(shù)數(shù)列
(e為自然對(duì)數(shù)的底)且總有的等差中項(xiàng),的等比中項(xiàng).
(1) 求證: ;
(2) 求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分) 已知數(shù)列的首項(xiàng),,
(1)若,求證是等比數(shù)列并求出的通項(xiàng)公式;
(2)若對(duì)一切都成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

..(本題滿分18分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分。
設(shè)函數(shù),數(shù)列滿足。
⑴求數(shù)列的通項(xiàng)公式;
⑵設(shè),若對(duì)恒成立,求實(shí)數(shù)的取值范圍;
⑶是否存在以為首項(xiàng),公比為的等比數(shù)列,使得數(shù)列中每一項(xiàng)都是數(shù)列中不同的項(xiàng),若存在,求出所有滿足條件的數(shù)列的通項(xiàng)公式;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

為進(jìn)一步保障和改善民生,國(guó)家“十二五”規(guī)劃綱要提出,“十二五”期間將提高住房
保障水平,使城鎮(zhèn)保障性信房覆蓋率達(dá)到20℅左右. 某城市2010年有商品房萬(wàn)套,保障
性住房萬(wàn)套(). 預(yù)計(jì)2011年新增商品房萬(wàn)套,以后每年商品新增量是上一年新增
量的倍,問(wèn)“十二五”期間(2011年~2015年)該城市保障性住房建設(shè)年均應(yīng)增加多少
萬(wàn)套才能使覆蓋率達(dá)到
,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分18分)
各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,數(shù)列滿足,數(shù)列的前項(xiàng)和為,求;
(3)若數(shù)列,甲同學(xué)利用第(2)問(wèn)中的,試圖確定的值是否可以等于2011?為此,他設(shè)計(jì)了一個(gè)程序(如圖),但乙同學(xué)認(rèn)為這個(gè)程序如果被執(zhí)行會(huì)是一個(gè)“死循環(huán)”(即程序會(huì)永遠(yuǎn)循環(huán)下去,而無(wú)法結(jié)束),你是否同意乙同學(xué)的觀點(diǎn)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)滿足),且,=(   )
A.95 B.97 C.105D.192

查看答案和解析>>

同步練習(xí)冊(cè)答案