(2012•湖北)設a,b,c,x,y,z是正數(shù),且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,則
a+b+c
x+y+z
=( 。
分析:根據(jù)所給條件,利用柯西不等式求解,利用等號成立的條件即可.
解答:解:由柯西不等式得,(a2+b2+c2)(
1
4
x2+
1
4
y2+
1
4
z2)≥(
1
2
ax+
1
2
by+
1
2
cz)2,
當且僅當
a
1
2
x
=
b
1
2
y
=
c
1
2
z
時等號成立
∵a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,
∴等號成立
a
1
2
x
=
b
1
2
y
=
c
1
2
z

a+b+c
x+y+z
=
1
2

故選C.
點評:柯西不等式的特點:一邊是平方和的積,而另一邊為積的和的平方,因此,當欲證不等式的一邊視為“積和結(jié)構(gòu)”或“平方和結(jié)構(gòu)”,再結(jié)合不等式另一邊的結(jié)構(gòu)特點去嘗試構(gòu)造.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•湖北)設△ABC的內(nèi)角A,B,C,所對的邊分別是a,b,c.若(a+b-c)(a+b+c)=ab,則角C=
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖北)設△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若三邊的長為連續(xù)的三個正整數(shù),且A>B>C,3b=20acosA,則sinA:sinB:sinC為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖北)設a,b,c,∈R+,則“abc=1”是“
1
a
+
1
b
+
1
c
≤a+b+c
”的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖北)設函數(shù)f(x)=axn(1-x)+b(x>0),n為正整數(shù),a,b為常數(shù),曲線y=f(x)在(1,f(1))處的切線方程為x+y=1.
(I)求a,b的值;
(II)求函數(shù)f(x)的最大值
(III)證明:f(x)<
1ne

查看答案和解析>>

同步練習冊答案