【題目】某同學(xué)用“五點法”畫函數(shù)f(x)=Asin(ωx+φ) 在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 5 | -5 | 0 |
(1)請將上表數(shù)據(jù)補充完整,并直接寫出函數(shù)f(x)的解析式;
(2)將y=f(x)圖象上所有點向左平行移動θ(θ>0)個單位長度,得到y(tǒng)=g(x)的圖象.若y=g(x)圖象的一個對稱中心為,求θ的最小值.
【答案】(1);(2)
【解析】試題分析:(1)利用整體思想和五個關(guān)鍵點進行求解;(2)利用整體思想和三角函數(shù)的性質(zhì)進行求解.
試題解析:(1)根據(jù)表中已知數(shù)據(jù),解得A=5,ω=2,φ=-.數(shù)據(jù)補全如下表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 5 | 0 | -5 | 0 |
且函數(shù)表達式為f(x)=5sin.
(2)由(1)知f(x)=5sin,得g(x)=5sin.
因為y=sinx的對稱中心為(kπ,0),k∈Z.
令2x+2θ-=kπ,解得x=+-θ,k∈Z.
由于函數(shù)y=g(x)的圖象關(guān)于點成中心對稱,令+-θ=,解得θ=-,k∈Z,由θ>0可知,當k=1時,θ取得最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐S-ABCD中的底面是菱形,∠BAD=60°,SD⊥底面ABCD,SD=AB=2,E、F分別為SB、CD的中點.
(Ⅰ)求證:EF∥平面SAD;
(Ⅱ)點P是SB上一點,若SB⊥平面APC,試確定點P的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點為拋物線C:的焦點,過點的動直線與拋物線C交于,兩點,如圖.當直線與軸垂直時,.
(1)求拋物線C的方程;
(2)已知點,設(shè)直線PM的斜率為,直線PN的斜率為.請判斷是否為定值,若是,寫出這個定值,并證明你的結(jié)論;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(且)
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)當時,設(shè),若有兩個相異零點,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當x>0時, .給出以下命題:
①當x<0時,f(x)=ex(x+1);
②函數(shù)f(x)有五個零點;
③若關(guān)于x的方程f(x)=m有解,則實數(shù)m的取值范圍是f(-2)≤m≤f(2);
④對x1,x2∈R,|f(x2)-f(x1)|<2恒成立.
其中,正確命題的序號是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型娛樂場有兩種型號的水上摩托,管理人員為了了解水上摩托的使用及給娛樂城帶來的經(jīng)濟收入情況,對該場所最近6年水上摩托的使用情況進行了統(tǒng)計,得到相關(guān)數(shù)據(jù)如表:
(1)請根據(jù)以上數(shù)據(jù),用最小二乘法求水上摩托使用率關(guān)于年份代碼的線性回歸方程,并預(yù)測該娛樂場2018年水上摩托的使用率;
(2)隨著生活水平的提高,外出旅游的老百姓越來越多,該娛樂場根據(jù)自身的發(fā)展需要,準備重新購進一批水上摩托,其型號主要是目前使用的Ⅰ型、Ⅱ型兩種,每輛價格分別為1萬元、1.2萬元.根據(jù)以往經(jīng)驗,每輛水上摩托的使用年限不超過四年.娛樂場管理部對已經(jīng)淘汰的兩款水上摩托的使用情況分別抽取了50輛進行統(tǒng)計,使用年限如條形圖所示:
已知每輛水上摩托從購入到淘汰平均年收益是0.8萬元,若用頻率作為概率,以每輛水上摩托純利潤(純利潤=收益-購車成本)的期望值為參考值,則該娛樂場的負責人應(yīng)該選購Ⅰ型水上摩托還是Ⅱ型水上摩托?
附:回歸直線方程為,其中, .參考數(shù)據(jù),
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).
(Ⅰ)求f()的值.
(Ⅱ)求f(x)的最小正周期及單調(diào)遞增區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com