.已知雙曲線=1(a>0,b>0)的左、右兩個焦點(diǎn)分別為F1、F2,P是它左支上一點(diǎn),P到左準(zhǔn)線的距離為d,雙曲線的一條漸近線為y=x,問是否存在點(diǎn)P,使|PF1|、|PF2|成等比數(shù)列?若存在,求出P的坐標(biāo);若不存在說明理由.

假設(shè)存在點(diǎn)P(x0,y0)滿足題中條件.

∵雙曲線的一條漸近線為y=x,∴,∴b2=3a2,c2-a2=3a2, =2.即e=2.

=2得,

|PF2|=2|PF1|          ①

∵雙曲線的兩準(zhǔn)線方程為x=±,

∴|PF1|=|2x0+2·|=|2x0+a|,|PF2|=|2x0-2·|=|2x0-a|.

∵點(diǎn)P在雙曲線的左支上,∴|PF1|=-(a+ex0),|PF2|=a-ex0,代入①得:a-ex0=-2(a+ex0),∴x0=-a,代入=1,得y0=±a.

∴存在點(diǎn)P使d、|PF1|、|PF2|成等比數(shù)列,點(diǎn)P的坐標(biāo)是(-a,±a).


解析:

同答案

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:選修設(shè)計數(shù)學(xué)1-1北師大版 北師大版 題型:013

已知雙曲線=1(a>)的兩條漸近線的夾角為,則雙曲線的離心率為

[  ]
A.

2

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:選修設(shè)計數(shù)學(xué)1-1北師大版 北師大版 題型:013

已知雙曲線=1(a>0,b<0)的右焦點(diǎn)為F,若過點(diǎn)F且傾斜角為60°的直線與雙曲線的右支有且只有一個交點(diǎn),則此雙曲線離心率的取值范圍是

[  ]
A.

(1,2)

B.

(1,2]

C.

[2,+∞)

D.

(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線=1(a>0,b>0)的兩條漸近線均和圓Cx2y2-6x+5=0相切,且雙曲線的右焦點(diǎn)為圓C的圓心,則該雙曲線的方程為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆廣東省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知雙曲線=1(a>0,b>0)的右焦點(diǎn)為F,若過點(diǎn)F且傾斜角為60°的直線與雙曲線的右支有且只有一個交點(diǎn),則此雙曲線離心率的取值范圍是     ( 。

A.[1,2]             B.(1,2)             C.[2,+∞)         D.(2,+∞)

 

查看答案和解析>>

同步練習(xí)冊答案