若拋物線的焦點在圓上,則            

解析試題分析:因為拋物線的焦點在圓上,令y=0,可知,因此可知焦點的橫坐標(biāo)為1,那么p=2,故答案為2.
考點:本試題考查拋物線與圓的知識。
點評:解決該試題的關(guān)鍵是運(yùn)用拋物線方程表示其焦點坐標(biāo),通過圓的一般式,得到其與x軸的交點的坐標(biāo),進(jìn)而得到p的值。屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

直線與曲線的交點的個數(shù)是        個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

將正方形ABCD沿對角線BD折成直二面角A-BD-C,有如下四個結(jié)論:

(1)ABD為二面角A-BC-D的平面角;(2)ACBD;(3) △ACD是等邊三角形;
(4)直線AB與平面BCD成600的角;
其中正確的結(jié)論的序號是        。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)雙曲線的右焦點為,左右頂點分別為,過且與雙曲線的一條漸近線平行的直線與另一條漸近線相交于,若恰好在以為直徑的圓上,則雙曲線的離心率為________ ______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知橢圓的右焦點為,點在橢圓上,以點為圓心的圓與軸相切,且同時與軸相切于橢圓的右焦點,則橢圓的離心率為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知雙曲線的一條漸近線方程為,則其離心率為    。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知點及拋物線上的動點,則的最小值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

直線被曲線截得的弦長為           ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知點,點是拋物線 的焦點,點是拋物線上的點,則使取最小值時點的坐標(biāo)為          

查看答案和解析>>

同步練習(xí)冊答案