函數(shù)
g(x)=的定義域?yàn)椋ā 。?/div>
A、{x|x≥-3} |
B、{x|x>-3} |
C、{x|x≤-3} |
D、{x|x<-3} |
分析:要求函數(shù)的定義域,由題可知,這是一個(gè)無(wú)理函數(shù),根號(hào)里邊的數(shù)必須為非負(fù)數(shù)才能有意義得到不等式求出解集即可.
解答:解:據(jù)題可知:x+3≥0
則x≥-3
故答案為{x|x≥-3}
故選A.
點(diǎn)評(píng):本題考查根式函數(shù)的定義域的求解,集合的表示,是基礎(chǔ)知識(shí)的考查,試題比較容易.解答的關(guān)鍵是學(xué)生對(duì)定義域的理解及其求法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:
題型:
設(shè)函數(shù)f(x)=a
2x
2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
,求a的值;
(2)關(guān)于x的不等式(x-1)
2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱(chēng)直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)
a=,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
設(shè)函數(shù)f(x)=p(x-
)-2lnx,g(x)=
(p是實(shí)數(shù),e為自然對(duì)數(shù)的底數(shù))
(1)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍;
(2)若直線l與函數(shù)f(x),g(x)的圖象都相切,且與函數(shù)f(x)的圖象相切于點(diǎn)(1,0),求p的值;
(3)若在[1,e]上至少存在一點(diǎn)x
0,使得f(x
0)>g(x
0)成立,求p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知函數(shù)已知冪函數(shù)
g(x)=x-m2+2m+3(m∈Z)為偶函數(shù),且在區(qū)間(0,+∞)上是單調(diào)增函數(shù),又f(x)=sinx+mcosx,F(xiàn)(x)=f′(x)[f(x)+f′(x)]-1,f′(x)是f(x)的導(dǎo)函數(shù).
(I)若
tanx=,求F(x)的值;
(Ⅱ)把F(x)圖象的橫坐標(biāo)縮小為原來(lái)的一半后得到H(x),求H(x)的單調(diào)減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
給出下列四個(gè)命題:
①函數(shù)y=|x|與函數(shù)
y=()2表示同一個(gè)函數(shù);
②已知函數(shù)f(x+1)=x
2,則f(e)=e
2-1
③已知函數(shù)f(x)=4x
2+kx+8在區(qū)間[5,20]上具有單調(diào)性,則實(shí)數(shù)k的取值范圍是(-∞,40]∪[160,+∞)
④已知f(x)、g(x)是定義在R上的兩個(gè)函數(shù),對(duì)任意x、y∈R滿足關(guān)系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0時(shí)f(x)•g(x)≠0則函數(shù)f(x)、g(x)都是奇函數(shù).
其中正確命題的個(gè)數(shù)是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:徐州模擬
題型:解答題
設(shè)函數(shù)f(x)=a
2x
2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2,求a的值;
(2)關(guān)于x的不等式(x-1)
2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱(chēng)直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)
a=,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>