【題目】如圖,已知是半圓的直徑,,是將半圓圓周四等分的三個(gè)分點(diǎn)

(1)從這5個(gè)點(diǎn)中任取3個(gè)點(diǎn),求這3個(gè)點(diǎn)組成直角三角形的概率;

(2)在半圓內(nèi)任取一點(diǎn),求的面積大于的概率.

【答案】(1);(2).

【解析】

試題分析:對(duì)于問題(1)首先求出從個(gè)點(diǎn)中任取個(gè)點(diǎn),一共可以組成的三角形的個(gè)數(shù),再求出以為直徑的三角形的個(gè)數(shù),即可求出所求的概率;對(duì)于問題(2)首先求出當(dāng)三角形的面積等于時(shí)點(diǎn)在半圓內(nèi)的位置,然后再根據(jù)幾何概型即可求得所需的結(jié)論.

試題解析:(1)從個(gè)點(diǎn)中任取個(gè)點(diǎn),一共可以組成個(gè)三角形:,其中是直角三角形的只有個(gè),所以組成直角三角形的概率為

(2)連接,取線段的中點(diǎn),則,

易求得,當(dāng)點(diǎn)在線段上時(shí),

所以只有當(dāng)點(diǎn)落在陰影部分時(shí),面積才能大于,而,所以由幾何概型的概率公式得的面積大于的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐PABCD的底面ABCD是正方形,E,F分別為ACPB上的點(diǎn),它的直觀圖,正視圖,側(cè)視圖如圖所示.

(1)EF與平面ABCD所成角的大。

(2)求二面角BPAC的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為拋物線上一個(gè)動(dòng)點(diǎn), 為圓上一個(gè)動(dòng)點(diǎn),那么點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線的準(zhǔn)線距離之和的最小值是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中將底面為直角三角形的直棱柱稱為塹堵,將底面為矩形的棱臺(tái)稱為芻童.在如圖所示的塹堵與芻童的組合體中,.臺(tái)體體積公式:,其中分別為臺(tái)體上、下底面面積,為臺(tái)體高.

(Ⅰ)證明:直線 平面

(Ⅱ)若,,,三棱錐的體積,求該組合體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正四棱錐PABCD中,底面邊長為2,側(cè)棱長為M,N分別為AB,BC的中點(diǎn),以O為原點(diǎn),射線OM,ON,OP分別為x軸、y軸、z軸的正方向建立空間直角坐標(biāo)系.若E,F分別為PA,PB的中點(diǎn),求A,B,CD,EF的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將圓上每一點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?/span>,得曲線C.

)寫出C的參數(shù)方程;

)設(shè)直線l C的交點(diǎn)為P1,P2,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過線段P1 P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)分別加上2、5、13后成為等比數(shù)列{bn}中的b3、b4、b5.

(1)求數(shù)列{bn}的通項(xiàng)公式;

(2)數(shù)列{bn}的前n項(xiàng)和為Sn,求證:數(shù)列是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司擬投資100萬元,有兩種投資方案可供選擇:一種是年利率為10%按單利計(jì)算,5年后收回本金和利息;另一種是年利率為9%按每年復(fù)利一次計(jì)算,5年后收回本金和利息.哪一種投資更有利?這種投資比另一種投資5年可多得利息多少元?(結(jié)果精確到0.01萬元)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)lg(axbx),(a>1>b>0).

(1)f(x)的定義域;

(2)f(x)(1,+∞)上遞增且恒取正值,a,b滿足的關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案