1.在△ABC三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若c2sinA=5sinC,(a+c)2=16+b2,則△ABC的面積是2.

分析 由正弦定理化簡(jiǎn)已知等式可得ac=5,由余弦定理可求cosB=$\frac{3}{5}$,利用同角三角函數(shù)基本關(guān)系式解得sinB,進(jìn)而根據(jù)三角形面積公式即可計(jì)算得解.

解答 解:∵c2sinA=5sinC,
∴ac2=5c,可得:ac=5,
∵(a+c)2=16+b2,可得:b2=a2+c2+2ac-16,
∴由余弦定理b2=a2+c2-2accosB,可得:2ac-16=-2accosB,整理可得:2ac(1+cosB)=16,
∴cosB=$\frac{3}{5}$,解得sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{4}{5}$,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×5×\frac{4}{5}$=2.
故答案為:2.

點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,同角三角函數(shù)基本關(guān)系式,三角形面積公式在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知$a={log_{\frac{1}{5}}}\frac{2}{5}$,$b={3^{\frac{3}{5}}}$,$c={4^{\frac{1}{5}}}$,則a,b,c的大小關(guān)系是(  )
A.a<c<bB.c<b<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知雙曲線$\frac{x^2}{4}-\frac{y^2}{2}=1$上有不共線三點(diǎn)A,B,C,且AB,BC,AC的中點(diǎn)分別為D,E,F(xiàn),若滿足OD,OE,OF的斜率之和為-1,則$\frac{1}{{{k_{AB}}}}+\frac{1}{{{k_{BC}}}}+\frac{1}{{{k_{AC}}}}$=( 。
A.2B.$-\sqrt{3}$C.-2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在二項(xiàng)式(x2-$\frac{1}{x}$)5的展開(kāi)式中,含x項(xiàng)的系數(shù)a是,則${∫}_{a}^{-1}$2xdx=-99.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)函數(shù)f(x)滿足2x2f(x)+x3f′(x)=ex,f(2)=$\frac{{e}^{2}}{8}$,則x∈[2,+∞)時(shí),f(x)( 。
A.有最大值$\frac{{e}^{2}}{8}$B.有最小值$\frac{{e}^{2}}{8}$C.有最大值$\frac{{e}^{2}}{2}$D.有最小值$\frac{{e}^{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知空間幾何體CBEADF如圖所示,底面AEFD為矩形,平面BEFC⊥平面AEFD,∠CFE=∠BEF=90°,其中AE+BE=AD=2,DF+CF=4.
(1)若AE=1,G為棱CF上靠近點(diǎn)F的三等分點(diǎn),證明:DG∥平面ABC;
(2)當(dāng)VE-ABF=$\frac{1}{3}$時(shí),求直線BF與CA所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若sinA=$\frac{2}{3}$,sinB=2cosC且c2-a2=b,則b=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在二項(xiàng)式(x+$\frac{1}{2•\root{3}{x}}$)n的展開(kāi)式中,若前三項(xiàng)系數(shù)成等差數(shù)列,則展開(kāi)式中的常數(shù)項(xiàng)為( 。
A.$\frac{7}{16}$B.7C.16D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊長(zhǎng)分別為a、b、c.設(shè)S為△ABC的面積,滿足S=$\frac{\sqrt{3}}{4}$(a2+c2-b2).
(Ⅰ)求B;
(Ⅱ)若b=$\sqrt{3}$,求($\sqrt{3}$-1)a+2c的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案