【題目】為有效促進(jìn)我市體育產(chǎn)業(yè)和旅游產(chǎn)業(yè)有機(jī)融合,提高我市的知名度,更好地宣傳萍鄉(xiāng)武功山,并通過賽事向社會(huì)各界傳播健康、低碳、綠色、環(huán)保的運(yùn)動(dòng)理念。在今年9月21日第九屆環(huán)鄱陽湖國(guó)際自行車大賽第九站比賽在我市武功山舉行。在這次89.5公里的自行車個(gè)人賽中,其中25名參賽選手的成績(jī)(單位:分鐘)的莖葉圖如圖所示:

(1)現(xiàn)將參賽選手按成績(jī)由好到差編為1~25號(hào),再用系統(tǒng)抽樣方法從中選取5人,已知選手甲的成績(jī)?yōu)?45分鐘,若甲被選取,求被選取的其余4名選手的成績(jī)的平均數(shù);

(2)若從總體中選取一個(gè)樣本,使得該樣本的平均水平與總體相同,且樣本的方差不大于7,則稱選取的樣本具有集中代表性,試從總體(25名參賽選手的成績(jī))選取一個(gè)具有集中代表性且樣本容量為5的樣本,并求該樣本的方差.

【答案】(1)157 (2)所選取的樣本為148、150、153、154、155, 此樣本的方差為6.8.

【解析】

1)按照系統(tǒng)抽樣的方法進(jìn)行先分組,然后在第一組中抽取一個(gè)樣本,然后在第一個(gè)樣本的編號(hào)上,依次加組距便可全部的樣本,進(jìn)而得到均值;

225個(gè)樣本的均值為152,因?yàn)橐_保方差不大于7,故選取的5個(gè)樣本應(yīng)在均值152的周圍,從而確定5個(gè)樣本。

解:(1)將參賽選手按成績(jī)由好到差分為5組,

則第一組(140,141,142,143,145),

第二組(146,146,146,146,148),

第三組(149,150,152,153,154),

第四組(155,155,155,157,159),

第五組(160,160,165,166,167),

甲的編號(hào)為第一組的第5個(gè),

則其余4名選手的成績(jī)分別為148、154、159、167,

∴這4個(gè)成績(jī)的平均數(shù)

(2)∵25名參賽選手的成績(jī)的總分為3800,

∴總體的平均數(shù)為

具有集中代表性且樣本容量為5的一個(gè)樣本為:

148、150、153、154、155,

該樣本的方差為

所選取的樣本為148、150、153、154、155, 此樣本的方差為6.8.

練習(xí)冊(cè)系列答案

14

0

1

2

3

5

6

6

6

6

8

9

15

0

2

3

4

5

5

5

7

9

16

0

0

5

6

7

年級(jí) 高中課程 年級(jí) 初中課程
高一 高一免費(fèi)課程推薦! 初一 初一免費(fèi)課程推薦!
高二 高二免費(fèi)課程推薦! 初二 初二免費(fèi)課程推薦!
高三 高三免費(fèi)課程推薦! 初三 初三免費(fèi)課程推薦!
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃投資開發(fā)一種新能源產(chǎn)品,預(yù)計(jì)能獲得10萬元1000萬元的收益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)開發(fā)科研小組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金(單位:萬元)隨收益(單位:萬元)的增加而增加,且獎(jiǎng)金總數(shù)不超過9萬元,同時(shí)獎(jiǎng)金總數(shù)不超過收益的.

(Ⅰ)若建立獎(jiǎng)勵(lì)方案函數(shù)模型,試確定這個(gè)函數(shù)的定義域、值域和的范圍;

(Ⅱ)現(xiàn)有兩個(gè)獎(jiǎng)勵(lì)函數(shù)模型:①;②.試分析這兩個(gè)函數(shù)模型是否符合公司的要求?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了組建一支業(yè)余足球隊(duì),在高一年級(jí)隨機(jī)選取50名男生測(cè)量身高,發(fā)現(xiàn)被測(cè)男生的身高全部在之間,將測(cè)量結(jié)果按如下方式分成六組:第1,第2,,第6,如圖是按上述分組得到的頻率分布直方圖,以頻率近似概率.

1)若學(xué)校要從中選1名男生擔(dān)任足球隊(duì)長(zhǎng),求被選取的男生恰好在第5組或第6組的概率;

2)試估計(jì)該校高一年級(jí)全體男生身高的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表)與中位數(shù);

3)現(xiàn)在從第5與第6組男生中選取兩名同學(xué)擔(dān)任守門員,求選取的兩人中最多有1名男生來自第5組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)不同身高的未成年男性的體重平均值如下表:

身高x(cm)

60

70

80

90

100

110

120

130

140

體重y(kg)

6.13

7.90

9.99

12.15

15.02

17.50

20.92

26.86

31.11

已知之間存在很強(qiáng)的線性相關(guān)性,

(Ⅰ)據(jù)此建立之間的回歸方程;

(Ⅱ)若體重超過相同身高男性體重平均值的倍為偏胖,低于倍為偏瘦,那么這個(gè)地區(qū)一名身高體重為 的在校男生的體重是否正常?

參考數(shù)據(jù):

附:對(duì)于一組數(shù)據(jù),其回歸直線 中的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面為直角梯形,,且,,平面底面,的中點(diǎn),為等邊三角形,是棱上的一點(diǎn),設(shè)不重合).

1)若平面,求的值;

2)當(dāng)時(shí),求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年,某地認(rèn)真貫徹落實(shí)中央十九大精神和各項(xiàng)宏觀調(diào)控政策,經(jīng)濟(jì)運(yùn)行平穩(wěn)增長(zhǎng),民生保障持續(xù)加強(qiáng),惠民富民成效顯著,城鎮(zhèn)居民收入穩(wěn)步增長(zhǎng),收入結(jié)構(gòu)穩(wěn)中趨優(yōu).據(jù)當(dāng)?shù)亟y(tǒng)計(jì)局公布的數(shù)據(jù),現(xiàn)將8月份至12月份當(dāng)?shù)氐娜司率杖朐鲩L(zhǎng)率與人均月收入分別繪制成折線圖(如圖一)與不完整的條形統(tǒng)計(jì)圖(如圖二).請(qǐng)從圖中提取相關(guān)的信息:

①10月份人均月收入增長(zhǎng)率為左右;

②11月份人均月收入為2047元;

③從上圖可知該地9月份至12月份人均月收入比8月份人均月收入均得到提高.

其中正確的信息個(gè)數(shù)為( )

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幾何體被一平面所截后剩下幾何體的三視圖如圖所示,則該剩下幾何體的體積為( )

A. 10B. 15C. 20D. 25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的內(nèi)角、的對(duì)邊分別為、內(nèi)一點(diǎn),若分別滿足下列四個(gè)條件:

;

;

則點(diǎn)分別為的(

A.外心、內(nèi)心、垂心、重心B.內(nèi)心、外心、垂心、重心

C.垂心、內(nèi)心、重心、外心D.內(nèi)心、垂心、外心、重心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐中,是正三角形,面,,分別是、的中點(diǎn).

1)證明:;

2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案