16.在數(shù)列{an}中,a1=1,2anan+1+an+1-an=0(n∈N*).
(Ⅰ)求證:數(shù)列{$\frac{1}{{a}_{n}}$}為等差數(shù)列,并求{an}的通項(xiàng)公式;
(Ⅱ)若tan+1(an-1)+1≥0對(duì)任意n≥2的整數(shù)恒成立,求實(shí)數(shù)t的取值范圍.

分析 (Ⅰ)已知等式兩邊同除anan+1化簡(jiǎn)后,根據(jù)等差數(shù)列的定義可證數(shù)列{$\frac{1}{{a}_{n}}$}為等差數(shù)列,由等差數(shù)列的通項(xiàng)公式求出{an}的通項(xiàng)公式;
(Ⅱ)由(Ⅰ)和分離常數(shù)法化簡(jiǎn)不等式,利用作差法判斷數(shù)列的單調(diào)性,再求出t的取值范圍.

解答 解:(Ⅰ)由題意得,2anan+1+an+1-an=0,
兩邊同除anan+1得,$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}$=2,
∵a1=1,∴數(shù)列{$\frac{1}{{a}_{n}}$}是以1為首項(xiàng)、2為公差的等差數(shù)列,
則$\frac{1}{{a}_{n}}$=1+2(n-1)=2n-1,
∴an=$\frac{1}{2n-1}$;
(Ⅱ)由(Ⅰ)得,tan+1(an-1)+1≥0為t•$\frac{1}{2n+1}$($\frac{1}{2n-1}$-1)+1≥0,
由n≥2化簡(jiǎn)得,t≤$\frac{(2n-1)(2n+1)}{2(n-1)}$,
設(shè)bn=$\frac{(2n-1)(2n+1)}{2(n-1)}$,
則bn+1-bn=$\frac{(2n+1)(2n+3)}{2n}$-$\frac{(2n-1)(2n+1)}{2(n-1)}$
=$\frac{2n+1}{2}•\frac{(2n+3)(n-1)-n(2n-1)}{n(n-1)}$=$\frac{(2n+1)(2n-3)}{2n(n-1)}$>0,
∴當(dāng)n≥2時(shí),數(shù)列{bn}是遞增數(shù)列,則$\frac{(2n-1)(2n+1)}{2(n-1)}$≥$\frac{15}{2}$,
∴實(shí)數(shù)t的取值范圍是(-∞,$\frac{15}{2}$].

點(diǎn)評(píng) 本題考查等差數(shù)列的定義、通項(xiàng)公式,數(shù)列的遞推式的化簡(jiǎn)與應(yīng)用,數(shù)列單調(diào)性的判斷方法等,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知BC是圓x2+y2=25的動(dòng)弦,且|BC|=6,則BC的中點(diǎn)的軌跡方程是( 。
A.x2+y2=1B.x2+y2=9C.x2+y2=16D.x2+y2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若f(x)=x3+3ax2+3(a+2)x+1有極大值和極小值,則a的取值范圍是   (  )
A.-1<a<2B.a>2或a<-1C.a≥2或a≤-1D.a>1或a<-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.假設(shè)某地有男駕駛員300名,女駕駛員200名.為了研究駕駛員日平均開車速度是否與有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名駕駛員,先設(shè)計(jì)了他們某月的日平均開車速度,然后按“男駕駛員”和“女駕駛員”分為兩組,再將兩組駕駛員的日平均開車速度(千米/小時(shí))分成5組:[50,60),[60,70),[70,80),[80,90),[90,100)分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

(1)從樣本中日平均開車速度不足60(千米/小時(shí))的駕駛員中隨機(jī)抽取2人,求至少抽到一名“女駕駛員”的概率;
(2)如果一般認(rèn)為日平均開車速度不少于80(千米/小時(shí))者為“危險(xiǎn)駕駛”.請(qǐng)你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“危險(xiǎn)駕駛與駕駛員的性別有關(guān)”?
危險(xiǎn)駕駛非危險(xiǎn)駕駛合計(jì)
男駕駛員154560
女駕駛員152540
合計(jì)3070100
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2>k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知F是拋物線y2=4x的焦點(diǎn),過F作一直線l交拋物線于A,B兩點(diǎn),若$\overrightarrow{FB}$=3$\overrightarrow{AF}$,則直線l與坐標(biāo)軸圍成的三角形的面積為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.正方體ABCD-A1B1C1D1中,點(diǎn)M是CD的中點(diǎn).
(1)求BB1和平面A1C1M所成角的余弦值;
(2)在BB1上找一點(diǎn)N,使得D1N⊥平面A1C1M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=eax,g(x)=-x2+bx+c(a,b,c∈R),且曲線y=f(x)與曲線y=g(x)在它們的交點(diǎn)(0,c)處具有公共切線.設(shè)h(x)=f(x)-g(x).
(Ⅰ)求c的值,及a,b的關(guān)系式;
(Ⅱ)求函數(shù)h(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)a≥0,若對(duì)于任意x1,x2∈[0,1],都有|h(x1)-h(x2)|≤e-1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.“α是第二象限角”是“α是鈍角”的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知直三棱柱ABC-A1B1C1的各頂點(diǎn)都在同一球面上.若AB=AC=AA1=2,∠BAC═90°,則該球的體積等于4$\sqrt{3}$π.

查看答案和解析>>

同步練習(xí)冊(cè)答案