【題目】函數(shù)y = f(x)是定義域?yàn)?/span>R的偶函數(shù),當(dāng)x≥0時,函數(shù)f(x)的圖象是由一段拋物線和一條射線組成(如圖所示).
①當(dāng)時,y的取值范圍是______;
②如果對任意 (b <0),都有,那么b的最大值是______.
【答案】
【解析】
①根據(jù)f(x)是偶函數(shù),圖象關(guān)于y軸對稱,結(jié)合圖象可得y的取值范圍.
②當(dāng)x≥0時,設(shè)拋物線的方程為y=ax2+bx+c,求解解析式,根據(jù)f(x)是定義域?yàn)镽的偶函數(shù),可得x<0的解析式,令y=1,可得x對應(yīng)的值,結(jié)合圖象可得b的最大值.
由圖象可知,當(dāng)時,函數(shù)在上的最小值,
當(dāng)時,函數(shù)在上的最小值,
所以當(dāng),函數(shù)的值域?yàn)?/span>;
當(dāng)時,函數(shù),當(dāng)時,函數(shù),
當(dāng)時,或,
又因?yàn)楹瘮?shù)為偶函數(shù),圖象關(guān)于軸對稱,
所以對于任意,要使得,則,或,
則實(shí)數(shù)的最大值是.
故答案為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P和非零實(shí)數(shù),若兩條不同的直線 均過點(diǎn)P,且斜率之積為,則稱直線是一組“共軛線對”,如直 是一組“共軛線對”,其中O是坐標(biāo)原點(diǎn).
(1)已知是一組“共軛線對”,求的夾角的最小值;
(2)已知點(diǎn)A(0,1)、點(diǎn)和點(diǎn)C(1,0)分別是三條直線PQ,QR,RP上的點(diǎn)(A,B,C與P,Q,R均不重合),且直線PR,PQ是“ 共軛線對”,直線QP,QR是“共軛線對”,直線RP,RQ是“共軛線對”,求點(diǎn)P的坐標(biāo);
(3)已知點(diǎn) ,直線是“共軛線對”,當(dāng)的斜率變化時,求原點(diǎn)O到直線的距離之積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中,為的中點(diǎn),為外心,點(diǎn)滿足.
(1)證明:;
(2)若,設(shè)與相交于點(diǎn),關(guān)于點(diǎn)對稱,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,若,求的取值范圍;
(2)若定義在上奇函數(shù)滿足,且當(dāng)時,,求在上的解析式;
(3)對于(2)中的,若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)某氣象中心觀察和預(yù)測:發(fā)生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數(shù)圖象如圖所示.過線段OC上一點(diǎn)T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即時間t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km).
(1)當(dāng)t=4時,求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來;
(3)若N城位于M地正南方向,且距M地650 km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發(fā)生后多長時間它將侵襲到N城?如果不會,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人有4種顏色的燈泡(每種顏色的燈泡足夠多),要在如圖所示的6個點(diǎn)A、B、C、A1、、B1、C1上各裝一個燈泡,要求同一條線段兩端的燈泡不同色,則每種顏色的燈泡都至少用一個的安裝方法共有 種(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著城市地鐵建設(shè)的持續(xù)推進(jìn),市民的出行也越來越便利,根據(jù)大數(shù)據(jù)統(tǒng)計(jì),某條地鐵線路運(yùn)行時,發(fā)車時間間隔(單位:分鐘)滿足: ,平均每班地鐵的載客人數(shù) (單位:人)與發(fā)車時間間隔近似地滿足函數(shù)關(guān)系:,
(1)若平均每班地鐵的載客人數(shù)不超過1560人,試求發(fā)車時間間隔的取值范圍;
(2)若平均每班地鐵每分鐘的凈收益為(單位:元),則當(dāng)發(fā)車時間間隔為多少時,平均每班地鐵每分鐘的凈收益最大?并求出最大凈收益.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高一學(xué)生有1000名學(xué)生參加一次數(shù)學(xué)小測驗(yàn),隨機(jī)抽取200名學(xué)生的測驗(yàn)成績得如圖所示的頻率分布直方圖:
(1)求該學(xué)校高一學(xué)生隨機(jī)抽取的200名學(xué)生的數(shù)學(xué)平均成績和標(biāo)準(zhǔn)差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值做代表);
(2)試估計(jì)該校高一學(xué)生在這一次的數(shù)學(xué)測驗(yàn)成績在區(qū)間之內(nèi)的概率是多少?測驗(yàn)成績在區(qū)間之外有多少位學(xué)生?(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)為的導(dǎo)函數(shù)
(1)若曲線與曲線相切,求實(shí)數(shù)的值;
(2)設(shè)函數(shù)若為函數(shù)的極大值,且
①求的值;
②求證:對于.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com