若z∈C,且(1+i)z=3+4i,則復(fù)數(shù)z的虛部是( 。
A、
7
2
B、
1
2
C、
1
2
i
D、
7
2
i
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出.
解答: 解:∵(1+i)z=3+4i,
z=
3+4i
1+i
=
(3+4i)(1-i)
(1+i)(1-i)
=
7+i
2

其虛部為
1
2

故選:B.
點(diǎn)評(píng):本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+(y-2)2=4,M(x0,y0)為拋物線x2=4y上的動(dòng)點(diǎn).
(1)若x0=4,求過(guò)點(diǎn)M的圓的切線方程;
(2)若x0>4,求過(guò)點(diǎn)M的圓的兩切線與x軸圍成的三角形面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)已知z=a+bi(a、b∈R,i是虛數(shù)單位),z1,z2∈C,定義:D(z)=||z||=|a|+|b|,D(z1,z2)=||z1-z2||.給出下列命題:
(1)對(duì)任意z∈C,都有D(z)>0;
(2)若
.
z
是復(fù)數(shù)z的共軛復(fù)數(shù),則D(
.
z
)=D(z)
恒成立;
(3)若D(z1)=D(z2)(z1、z2∈C),則z1=z2;
(4)對(duì)任意z1、z2、z3∈C,結(jié)論D(z1,z3)≤D(z1,z2)+D(z2,z3)恒成立,
則其中真命題是( 。
A、(1)(2)(3)(4)
B、(2)(3)(4)
C、(2)(4)
D、(2)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=cos(2x+
π
6
)的周期為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合U=R,M={x|2x>1},P={y|y=
1-2x2
},則(  )
A、P∩(CUM)={0}
B、P∪M=M
C、M∪(CUP)=R
D、M∩P=P

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1•a2•a3…an=n2,則
a3
a5
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=1,an=2an-1+1(n>1),寫(xiě)出這個(gè)數(shù)列的前五項(xiàng),求這個(gè)數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1、F2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn),雙曲線上存在一點(diǎn)P使得|PF1|、|PF2|的等差中項(xiàng)為
3b
2
,|PF1|、|PF2|的等比中項(xiàng)為
3
2
ab
,則雙曲線的離心率為( 。
A、3
B、
9
4
C、
4
3
D、
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|x=a2-b2,a∈Z,b∈Z},求證:對(duì)k∈Z,4k-2∉A,2k-1∈A.

查看答案和解析>>

同步練習(xí)冊(cè)答案