【題目】如圖,在四邊形中,,,平面,平面,.

1)求證:;

2)若二面角是直二面角,求.

【答案】1)證明見(jiàn)解析;(2.

【解析】

1)連接,證得,再由,得到,進(jìn)而證得平面,即可得到;

2)以A為原點(diǎn),、、分別為x軸、y軸、z軸正方向,建立空間直角坐標(biāo)系,設(shè),分別求得平面和平面的法向量,結(jié)合,求得的值,即可求解.

1)連接,因?yàn)?/span>平面,平面,所以,

因?yàn)?/span>,,所以,

所以,可得

因?yàn)?/span>平面,平面,

所以,所以A,CF,E四點(diǎn)共面,

,所以平面,

因?yàn)?/span>平面,所以.

2)如圖所示,以A為原點(diǎn),、、分別為x軸、y軸、z軸正方向,

建立空間直角坐標(biāo)系,

設(shè),則,,

,.

,

,.

設(shè)平面的法向量,則,

,取,,,則,

設(shè)平面的法向量為,則,

,取,,,則,

由二面角是直二面角,則,即,解得.

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直四棱柱被平面所截得到如圖所示的五面體,

1)求證:∥平面;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在橢圓 上, 是橢圓的一個(gè)焦點(diǎn).

)求橢圓的方程;

)橢圓C上不與點(diǎn)重合的兩點(diǎn), 關(guān)于原點(diǎn)O對(duì)稱(chēng),直線(xiàn), 分別交軸于 兩點(diǎn).求證:以為直徑的圓被直線(xiàn)截得的弦長(zhǎng)是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若,求的單調(diào)區(qū)間;

2)證明:(i;

ii)對(duì)任意,對(duì)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(2017版)》提出了數(shù)學(xué)學(xué)科的六大核心素養(yǎng).為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對(duì)二人進(jìn)行了測(cè)驗(yàn),根據(jù)測(cè)驗(yàn)結(jié)果繪制了雷達(dá)圖(如圖,每項(xiàng)指標(biāo)值滿(mǎn)分為5分,分值高者為優(yōu)),則下面敘述正確的是(

A.甲的數(shù)據(jù)分析素養(yǎng)高于乙

B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)

C.乙的六大素養(yǎng)中邏輯推理最差

D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】萬(wàn)眾矚目的第14屆全國(guó)冬季運(yùn)動(dòng)運(yùn)會(huì)(簡(jiǎn)稱(chēng)“十四冬”)于2020216日在呼倫貝爾市盛大開(kāi)幕,期間正值我市學(xué)校放寒假,寒假結(jié)束后,某校工會(huì)對(duì)全校100名教職工在“十四冬”期間每天收看比賽轉(zhuǎn)播的時(shí)間作了一次調(diào)查,得到如圖頻數(shù)分布直方圖:

1)若將每天收看比賽轉(zhuǎn)播時(shí)間不低于3小時(shí)的教職工定義為“冰雪迷”,否則定義為“非冰雪迷”,請(qǐng)根據(jù)頻率分布直方圖補(bǔ)全列聯(lián)表;并判斷能否有的把握認(rèn)為該校教職工是否為“冰雪迷”與“性別”有關(guān);

2)在全!氨┟浴敝邪葱詣e分層抽樣抽取6名,再?gòu)倪@6名“冰雪迷”中選取2名作冰雪運(yùn)動(dòng)知識(shí)講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學(xué)期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)l過(guò)拋物線(xiàn)的焦點(diǎn)F且交拋物線(xiàn)于A,B兩點(diǎn),直線(xiàn)l與圓交于CD兩點(diǎn),若,設(shè)直線(xiàn)l的斜率為k,則________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

,曲線(xiàn)

過(guò)點(diǎn)

,且在點(diǎn)

處的切線(xiàn)方程為

.

(1)求

的值;

(2)證明:當(dāng)

時(shí),

;

(3)若當(dāng)

時(shí),

恒成立,求實(shí)數(shù)

的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(

A.命題,則的否命題為:,則

B.命題存在,使得的否定是:對(duì)任意,均有

C.命題的終邊在第一象限角,則是銳角的逆否命題為真命題

D.已知上的可導(dǎo)函數(shù),則是函數(shù)的極值點(diǎn)的必要不充分條件

查看答案和解析>>

同步練習(xí)冊(cè)答案