(本題滿分12分)設(shè)函數(shù)f(x)=x3ax2+3x+5(a>0).
(1)已知f(x)在R上是單調(diào)函數(shù),求a的取值范圍;
(2)若a=2,且當(dāng)x∈[1,2]時(shí),f(x)≤m恒成立,求實(shí)數(shù)m的取值范圍.

(1) 0<a≤6 ;(2) [15,+∞).

解析試題分析:(1)f′(x)=3x2-ax+3,              2分
其判別式Δ=a2-36.
當(dāng)0<a≤6時(shí),f′(x)≥0恒成立,                4分
此時(shí)f(x)在R上為增函數(shù).                       6分
(2)a=2時(shí),f′(x)=3x2-2x+3>0恒成立,
因此f(x)在(-∞,+∞)上是增函數(shù),                8分
從而f(x)在[1,2]上遞增,則f(x)max=f(2)=15,        10分
要使f(x)≤m在x∈[1,2]上恒成立,只需15≤m,
解得m∈[15,+∞).
故m的取值范圍是[15,+∞).                      12分
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性。
點(diǎn)評(píng):解決恒成立問題常用變量分離法,變量分離法主要通過兩個(gè)基本思想解決恒成立問題, 思路1:上恒成立;思路2: 上恒成立

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)(5分)若函數(shù),則_______________.
(2)(5分)化簡:=____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題14分)如圖,一水渠的橫斷面是拋物線形,O是拋物線的頂點(diǎn),口寬EF=4米,高3米,建立適當(dāng)?shù)闹苯亲鴺?biāo)系,(1)求拋物線方程.(2)若將水渠橫斷面改造成等腰梯形ABCD,要求高度不變,只挖土,不填土,求梯形ABCD的下底AB多大時(shí),所挖的土最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4-5:不等式選講
已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的定義域;
(2)若關(guān)于的不等式的解集是,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)求值:; (2)已知的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
某商店如果將進(jìn)價(jià)為8元的商品按每件10元售出,每天可銷售200件,現(xiàn)在提高售價(jià)以賺取更多利潤.已知每漲價(jià)0.5元,該商店的銷售量會(huì)減少10件,問將售價(jià)定為多少時(shí),才能使每天的利潤最大?其最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分15分)設(shè),
(1)當(dāng)時(shí),求曲線處的切線的斜率;
(2)如果存在,使得成立,求滿足上述條件的最大整數(shù);
(3)如果對(duì)于任意,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
某市郊區(qū)一村民小組有100戶農(nóng)民,且都從事蔬菜種植.據(jù)調(diào)查,平均每戶的年收入為3萬元.為了調(diào)整產(chǎn)業(yè)結(jié)構(gòu),郊區(qū)政府決定動(dòng)員該村部分農(nóng)民從事蔬菜加工.據(jù)預(yù)測,若能動(dòng)員戶農(nóng)民從事蔬菜加工,則剩下的繼續(xù)從事蔬菜種植的農(nóng)民平均每戶的年收入有望提高%,而從事蔬菜加工的農(nóng)民平均每戶的年收入將為萬元.
(1)在動(dòng)員戶農(nóng)民從事蔬菜加工后,要使從事蔬菜種植的農(nóng)民的總年收入不低于動(dòng)員前從事蔬菜種植的農(nóng)民的總年收入,求的取值范圍;
(2)在(1)的條件下,要使這100戶農(nóng)民中從事蔬菜加工的農(nóng)民的總年收入始終不高于從事蔬菜種植的農(nóng)民的總年收入,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)某公司生產(chǎn)一種產(chǎn)品每年需投入固定成本為0.5萬元,此外每生產(chǎn)100件這種產(chǎn)品還需要增加投入0.25萬元.經(jīng)預(yù)測知,當(dāng)售出這種產(chǎn)品百件時(shí),若,則銷售所得的收入為萬元:若,則銷售收入為萬元.
(1)若該公司的這種產(chǎn)品的年產(chǎn)量為百件,請(qǐng)把該公司生產(chǎn)并銷售這種產(chǎn)品所得的年利潤表示為當(dāng)年生產(chǎn)量的函數(shù);
(2)當(dāng)年產(chǎn)量為多少時(shí),當(dāng)年公司所獲利潤最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案