在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,已知a=5
2
,c=10,A=30°,則角B等于( 。
A、105°B、60°
C、15°D、105°或15°
考點(diǎn):正弦定理
專題:解三角形
分析:由正弦定理可得sinC=
csinA
a
=
2
2
,從而可求C的值,由B=π-A-C即可求出B的值.
解答: 解:由正弦定理可得:
a
sinA
=
c
sinC
,
從而可得:sinC=
csinA
a
=
10×sin30°
5
2
=
2
2
,
∵0<C<π,
∴C=45°或135°,
∵B=π-A-C,
∴角B等105°或15°.
故選:D.
點(diǎn)評:本題主要考察了正弦定理在解三角形中的應(yīng)用,屬于基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=ax2+2x+1,當(dāng)x∈[1,2],總有y∈[1,4]則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某觀測站C在A城的南偏西20°,一條筆直公路AB,其中B在A城南偏東40°,B與C相距31千米.有一人從B出發(fā)沿公路向A城走去,走了20千米后到達(dá)D處,此時(shí)C,D之間的距離為21千米,則A,C之間的距離是
 
千米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex,對于曲線y=f(x)上橫坐標(biāo)城等差數(shù)列的三個(gè)點(diǎn)A、B、C,給出以下四個(gè)判斷:①△ABC一定是鈍角三角形;②△ABC可能是直角三角形;③△ABC可能是等腰三角形;④△ABC不可能是等腰三角形.其中正確的判斷是( 。
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,若不等式
2
a
+
1
b
m
2a+b
恒成立,則m的最大值等于( 。
A、7B、8C、9D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)(2,2)引橢圓x2+4y2=4的切線,則切線方程為( 。
A、3x-8y+10=0
B、5x+8y-2=0
C、3x-8y+10=0或x-2=0
D、5x+8y-2=0或3x+10=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC的三個(gè)內(nèi)角A,B,C滿足sin2A=sin2B+sinBsinC+sin2C,則∠A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(x2+2)(
1
x2
-1)5的展開式的常數(shù)項(xiàng)是( 。
A、2B、3C、-2D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)是最小正周期π的偶函數(shù),f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),當(dāng)x∈[0,π]時(shí),0<f(x)<1; 當(dāng)x∈(0,π) 且x≠
π
2
時(shí),(x-
π
2
)f′(x)>0,則函數(shù)y=f(x)-sinx在[-2π,2π]上的零點(diǎn)個(gè)數(shù)為( 。
A、2B、4C、5D、8

查看答案和解析>>

同步練習(xí)冊答案