7.函數(shù)f(x)=2x+x-4的零點(diǎn)個(gè)數(shù)是1.

分析 求導(dǎo)函數(shù),確定函數(shù)f(x)=2x+x-4單調(diào)增,再利用零點(diǎn)存在定理,即可求得結(jié)論.

解答 解:求導(dǎo)函數(shù),可得f′(x)=2xln2+1,
∵2x>0,ln2>0,
∴f′(x)>0,
∴函數(shù)f(x)=2x+x-4單調(diào)增,
∵f(1)=2+1-4=-1<0,f(2)=4+2-4=2>0
∴函數(shù)在(1,2)上有唯一的零點(diǎn).
故答案為:1.

點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn),解題的關(guān)鍵是確定函數(shù)的單調(diào)性,利用零點(diǎn)存在定理進(jìn)行判斷.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知等式:
cos261°+sin231°+cos61°sin31°=a
cos266°+sin236°+cos66°sin36°=a
cos220°+sin210°+cos20°sin(-10°)=a
cos28°+sin222°+cos8°sin(-22°)=a
(Ι)根據(jù)以上所給的等式歸納出一個(gè)具有一般性的等式,并指出實(shí)數(shù)a的值
(Ⅱ)證明你寫的等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{1}{3}$x3+ax2-bx (a,b∈R).若y=f(x)圖象上的點(diǎn)(1,-$\frac{11}{3}$)處的切線斜率為-4.
(1)求a、b的值;
(2)求y=f(x)的極大值;
(3)對(duì)?x∈[-2,3],都有f(x)-k<0,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知拋物線C:y2=4x的焦點(diǎn)為F,直線y=x-2與C交于A,B兩點(diǎn),
(I)求線段AB的長(zhǎng);
(II)求三角形ABF的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=x3-3x2-9x+11
(Ⅰ)求函數(shù)f(x)的遞減區(qū)間.
(Ⅱ)討論函數(shù)f(x)的極值情況,如有,求出極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.定義在R上的奇函數(shù)f(x)滿足:對(duì)于任意x∈R,有f(x)=f(2-x),且f(1)=1若$tanα=\frac{1}{3}$,則f(10sinαcosα)的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{y≥x}\\{x+y-6≤0}\\{2x-y-2≥0}\end{array}\right.$,且z=2x+y的最小值為m,最大值為n,則m+n=( 。
A.15B.16C.17D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{1}{2}$,且橢圓上的點(diǎn)到焦點(diǎn)的距離最小值為1,若F為左焦點(diǎn),A為左頂點(diǎn),過(guò)F的直線交橢圓于M,N直線AM,AN交直線x=t(t<-2)于B,C兩點(diǎn).
(1)求橢圓方程;
(2)若以BC為直徑的圓過(guò)F,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.將函數(shù)f(x)=xsinx,當(dāng)${x_1},{x_2}∈[-\frac{π}{2},\frac{π}{2}]$時(shí),f(x1)>f(x2)成立,下列結(jié)論正確的是(  )
A.x1>x2B.x1>|x2|C.x1<x2D.x${\;}_{1}^{2}$>x${\;}_{2}^{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案