(2012•吉林二模)設a∈R,則“a-1<0”是“|a|<1”成立的(  )
分析:由 a-1<0可得 a<1,不能推出“|a|<1”成立.當“|a|<1”時,-1<a<1,能推出 a<1,即a-1<0,由此得出結論.
解答:因為當|a|<1 時,a<1 成立,
但 a<1 時,|a|<1 不成立,如 a=-2.
所以,“a-1<0“是“a的絕對值小于1”的必要不充分條件.
故答案選C
點評:本題主要考查充分條件、必要條件、充要條件的定義,絕對值不等式的解法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•吉林二模)設函數(shù)f(x)=
1-a2
x2+ax-lnx (a∈R)
(Ⅰ)當a=1時,求函數(shù)f(x)的極值;
(Ⅱ)當a>1時,討論函數(shù)f(x)的單調性.
(Ⅲ)若對任意a∈(2,3)及任意x1,x2∈[1,2],恒有ma+ln2>|f(x1)-f(x2)|成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�