【題目】已知集合M是具有下列性質的函數(shù)的全體:存在實數(shù)對,使得對定義域內任意實數(shù)x都成立.
(1)判斷函數(shù),是否屬于集合;
(2)若函數(shù)具有反函數(shù),是否存在相同的實數(shù)對,使得與同時屬于集合若存在,求出相應的;若不存在,說明理由;
(3)若定義域為的函數(shù)屬于集合,且存在滿足有序實數(shù)對和;當時,的值域為,求當時函數(shù)的值域.
【答案】(1)(2)不存在實數(shù)對,使得與同時屬于集合M.見解析(3)
【解析】
(1)根據已知中集合的定義,分別判斷兩個函數(shù)是否滿足條件,即可求得答案;
(2)假定,求出相應的值,得到矛盾,即可求得答案;
(3)利用題中的新定義,列出兩個等式恒成立;將x用代替,兩等式結合得到函數(shù)值的遞推關系;用不完全歸納的方法求出值域.
(1)當時,
,其值不為常數(shù),
故,
當時,,
當時,,
故存在實數(shù)對,使得對定義域內任意實數(shù)x都成立,
故;
(2)若函數(shù)具有反函數(shù),且,
則,
則,解得:,
此時,不存在反函數(shù),
故不存在實數(shù)對,使得與同時屬于集合M.
(3)函數(shù),且存在滿足條件的有序實數(shù)對和,
于是,,
用替換中得:,
當時,,,
時,.
又由得:,
故,即,
可得:.
時,,
時,,
……
依此類推可知時,,
故時,,
綜上所述,時,,
時,,
綜上所述,當時函數(shù)的值域為.
科目:高中數(shù)學 來源: 題型:
【題目】設圓的圓心為,直線過點且與軸不重合,直線交圓于,兩點,過點作的平行線交于點.
(1)證明為定值,并寫出點的軌跡方程;
(2)設點的軌跡為曲線,直線交于,兩點,過點且與直線垂直的直線與圓交于,兩點,求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的導函數(shù)為,且對任意的實數(shù)都有(是自然對數(shù)的底數(shù)),且,若關于的不等式的解集中恰有兩個整數(shù),則實數(shù)的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在用二次法求方程3x+3x-8=0在(1,2)內近似根的過程中,已經得到f(1)<0,f(1.5)>0,f(1.25)<0,則方程的根落在區(qū)間( 。
A. B. C. D. 不能確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】秸稈還田是當今世界上普通重視的一項培肥地力的增產措施,在杜絕了秸稈焚燒所造成的大氣污染的同時還有增肥增產作用.某農機戶為了達到在收割的同時讓秸稈還田,花元購買了一臺新型聯(lián)合收割機,每年用于收割可以收入萬元(已減去所用柴油費);該收割機每年都要定期進行維修保養(yǎng),第一年由廠方免費維修保養(yǎng),第二年及以后由該農機戶付費維修保養(yǎng),所付費用(元)與使用年數(shù)的關系為:,已知第二年付費元,第五年付費元.
(1)試求出該農機戶用于維修保養(yǎng)的費用(元)與使用年數(shù)的函數(shù)關系;
(2)這臺收割機使用多少年,可使平均收益最大?(收益=收入-維修保養(yǎng)費用-購買機械費用)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我們可以把看作每天的"進步”率都是1%,一年后是;而把看作每天的“落后”率都是1%,一年后是.利用計算工具計算并回答下列問題:
(1)一年后“進步”的是“落后”的多少倍?
(2)大約經過多少天后“進步”的分別是“落后”的10倍、100倍、1000倍?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分10分) 已知P(3,2),一直線過點P,
①若直線在兩坐標軸上截距之和為12,求直線的方程;
②若直線與x、y軸正半軸交于A、B兩點,當面積為12時求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司有一批專業(yè)技術人員,對他們進行年齡狀況和接受教育程度(學歷)的調查,其結果(人數(shù)分布)如表:
(1)用分層抽樣的方法在歲年齡段的專業(yè)技術人員中抽取一個容量為的樣本,將該樣本看成一個總體,從中任取人,求至少有人的學歷為研究生的概率;
(2)在這個公司的專業(yè)技術人員中按年齡狀況用分層抽樣的方法抽取個人,其中歲以下人,歲以上人,再從這個人中隨機抽取出人,此人的年齡為歲以上的概率為,求的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com