已知函數(shù),其中。
(1)若函數(shù)有極值,求的值;
(2)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍;
(3)證明:
(1)a=1,(2)(3)構(gòu)造函數(shù),然后利用導(dǎo)數(shù)判斷單調(diào)性,利用單調(diào)性證明不等式

試題分析:(1),
①當(dāng)時(shí),,單調(diào)遞減,且無(wú)極值
②當(dāng)時(shí),令,得,當(dāng)變化時(shí),的變化情況如下: 
 









極小值

時(shí)有極小值,
(2)時(shí)恒成立
①當(dāng)時(shí),恒成立
②當(dāng)時(shí),等價(jià)于時(shí)恒成立,令,則時(shí)為增函數(shù),
綜上所述,
(3)由(2)知,當(dāng)時(shí),時(shí)為增函數(shù)
當(dāng)時(shí),
,令,,又

 即
點(diǎn)評(píng):導(dǎo)數(shù)本身是個(gè)解決問(wèn)題的工具,是高考必考內(nèi)容之一,高考往往結(jié)合函數(shù)甚至是實(shí)際問(wèn)題考查導(dǎo)數(shù)的應(yīng)用,求單調(diào)、最值、完成證明等,請(qǐng)注意歸納常規(guī)方法和常見(jiàn)注意點(diǎn)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)=x+ax2+blnx,曲線y=過(guò)P(1,0),且在P點(diǎn)處的切斜線率為2.
(1)求a,b的值;
(2)證明:≤2x-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知是定義在上的奇函數(shù),,則不等式的解集是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),判斷的大小,并說(shuō)明理由;
(3)求證:當(dāng)時(shí),關(guān)于的方程:在區(qū)間上總有兩個(gè)不同的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)
(1)若函數(shù)在x=1處與直線相切.
①求實(shí)數(shù),的值;②求函數(shù)上的最大值.
(2)當(dāng)時(shí),若不等式對(duì)所有的都成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)曲線在點(diǎn)處的切線與直線平行,則實(shí)數(shù)等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,則a的值等于(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

曲線yx3x+3在點(diǎn)(1,3)處的切線方程為_(kāi)_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知為定義在上的可導(dǎo)函數(shù),且 對(duì)于任意恒成立,則(   ) 
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案