設(shè)拋物線y2=2px(p為常數(shù))的準(zhǔn)線與X軸交于點(diǎn)K,過K的直線l與拋物線交于A、B兩點(diǎn),則
OA
OB
=
5
4
p2
5
4
p2
分析:設(shè)點(diǎn)A(x1,y1),B(x2,y2).設(shè)直線l:my=x+
p
2
.聯(lián)立
my=x+
p
2
y2=2px
化為y2-2pmy+p2=0.由于直線l與拋物線相交于不同兩點(diǎn),得到△>0,化為m2>1.利用根與系數(shù)的關(guān)系y1+y2=2pm,y1y2=p2.再利用數(shù)量積運(yùn)算可得
OA
OB
=x1x2+y1y2=(my1-
p
2
)(my2-
p
2
)
+y1y2,代入即可.
解答:解:如圖所示,
設(shè)點(diǎn)A(x1,y1),B(x2,y2).
設(shè)直線l:my=x+
p
2

聯(lián)立
my=x+
p
2
y2=2px
化為y2-2pmy+p2=0.
∵直線l與拋物線相交于不同兩點(diǎn),∴△>0,化為m2>1.
∴y1+y2=2pm,y1y2=p2
OA
OB
=x1x2+y1y2=(my1-
p
2
)(my2-
p
2
)
+y1y2
=(m2+1)y1y2-
pm
2
(y1+y2)+
p2
4

=(m2+1)•p2-
pm
2
•2pm+
p2
4

=
5
4
p2

故答案為
5
4
p2
點(diǎn)評:熟練掌握直線與拋物線相交問題轉(zhuǎn)化方程聯(lián)立得到關(guān)于一個未知數(shù)的一元二次方程得根與系數(shù)的關(guān)系、數(shù)量積得運(yùn)算法則等是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,經(jīng)過點(diǎn)F的直線交拋物線于A,B兩點(diǎn),且A,B兩點(diǎn)坐標(biāo)分別為(x1,y1)、(x2,y2),y1>0,y2<0,M是拋物線的準(zhǔn)線上的一點(diǎn),O是坐標(biāo)原點(diǎn).若直線MA,MF,MB的斜率分別記為:KMA=a,KMF=b,KMB=c,(如圖)
(I)若y1y2=-4,求拋物線的方程;
(II)當(dāng)b=2時,求a+c的值;
(III)如果取KMA=2,KMB=-
12
時,判定|∠AMF-∠BMF|和∠MFO的值大小關(guān)系.并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

7、設(shè)拋物線y2=2px(p>0)上一點(diǎn)A(1,2)到點(diǎn)B(x0,0)的距離等于到直線x=-1的距離,則實(shí)數(shù)x0的值是
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線的弦與過弦的端點(diǎn)的兩條切線所圍成的三角形常被稱為阿基米德三角形,阿基米德三角形有一些有趣的性質(zhì),如:若拋物線的弦過焦點(diǎn),則過弦的端點(diǎn)的兩條切線的交點(diǎn)在其準(zhǔn)線上.設(shè)拋物線y2=2px(p>0),弦AB過焦點(diǎn),△ABQ為阿基米德三角形,則△ABQ為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,其準(zhǔn)線與x軸的交點(diǎn)為Q,過Q點(diǎn)的直線l交拋物線于A,B兩點(diǎn).
(1)若直線l的斜率為
2
2
,求證:
FA
FB
=0

(2)設(shè)直線FA,F(xiàn)B的斜率分別為k1,k2,求k1+k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線的弦與過弦的端點(diǎn)的兩條切線所圍成的三角形常被稱為阿基米德三角形,阿基米德三角形有一些有趣的性質(zhì),如:若拋物線的弦過焦點(diǎn),則過弦的端點(diǎn)的兩條切線的交點(diǎn)在其準(zhǔn)線上.設(shè)拋物線y2=2px(p>0),弦AB過焦點(diǎn),△ABQ為其阿基米德三角形,則△ABQ的面積的最小值為(  )
A、
p2
2
B、p2
C、2p2
D、4p2

查看答案和解析>>

同步練習(xí)冊答案