【題目】在某校歌詠比賽中,甲班、乙班、丙班、丁班均可從、、四首不同曲目中任選一首.

(1)求甲、乙兩班選擇不同曲目的概率;

(2)設(shè)這四個(gè)班級(jí)總共選取了首曲目,求的分布列及數(shù)學(xué)期望.

【答案】(1).(2)見(jiàn)解析.

【解析】試題分析:

(1)由題意可得從、四首不同曲目中任選一首,共有種選法,甲、乙兩班選擇不同的曲目共有種選法,則甲、乙兩班選擇不同曲目的概率為.

(2)由題意可得的可能取值為1,2,3,4,利用概率公式求得分布列,然后計(jì)算可得數(shù)學(xué)期望為.

試題解析:

(1)在某校歌詠比賽中,甲班、乙班、丙班、丁班均可從、、四首不同曲目中任選一首,共有種選法,甲、乙兩班選擇不同的曲目共有種選法,

∴甲、乙兩班選擇不同曲目的概率為.

(2)依題意可知, 的可能取值為1,2,3,4,

,

,

的分布列為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在測(cè)試中,客觀題難度的計(jì)算公式為,其中為第題的難度, 為答對(duì)該題的人數(shù), 為參加測(cè)試的總?cè)藬?shù).現(xiàn)對(duì)某校高三年級(jí)120名學(xué)生進(jìn)行一次測(cè)試,共5道客觀題.測(cè)試前根據(jù)對(duì)學(xué)生的了解,預(yù)估了每道題的難度,如下表所示:

題號(hào)

1

2

3

4

5

考前預(yù)估難度

0.9

0.8

0.7

0.6

0.4

測(cè)試后,從中隨機(jī)抽取了10名學(xué)生,將他們編號(hào)后統(tǒng)計(jì)各題的作答情況,如下表所示(“√”表示答對(duì),“×”表示答錯(cuò)):

學(xué)生編號(hào) 題號(hào)

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

(Ⅰ)根據(jù)題中數(shù)據(jù),將抽樣的10名學(xué)生每道題實(shí)測(cè)的答對(duì)人數(shù)及相應(yīng)的實(shí)測(cè)難度填入下表,并估計(jì)這120名學(xué)生中第5題的實(shí)測(cè)答對(duì)人數(shù);

題號(hào)

1

2

3

4

5

實(shí)測(cè)答對(duì)人數(shù)

實(shí)測(cè)難度

(Ⅱ)從編號(hào)為155人中隨機(jī)抽取2人,求恰好有1人答對(duì)第5題的概率;

Ⅲ)定義統(tǒng)計(jì)量,其中為第題的實(shí)測(cè)難度, 為第題的預(yù)估難度.規(guī)定:若,則稱(chēng)該次測(cè)試的難度預(yù)估合理,否則為不合理.判斷本次測(cè)試的難度預(yù)估是否合理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)安排甲乙丙丁戊5名學(xué)生分別擔(dān)任語(yǔ)文、數(shù)學(xué)、英語(yǔ)、物理、化學(xué)學(xué)科的科代表,要求甲不當(dāng)語(yǔ)文科代表,乙不當(dāng)數(shù)學(xué)科代表,若丙當(dāng)物理科代表則丁必須當(dāng)化學(xué)科代表,則不同的選法共有多少種( )

A. 53 B. 67 C. 85 D. 91

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), .

(Ⅰ)當(dāng)時(shí),求不等式的解集;

(Ⅱ)若, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩企業(yè)生產(chǎn)同一種型號(hào)零件,按規(guī)定該型號(hào)零件的質(zhì)量指標(biāo)值落在內(nèi)為優(yōu)質(zhì)品.從兩個(gè)企業(yè)生產(chǎn)的零件中各隨機(jī)抽出了500件,測(cè)量這些零件的質(zhì)量指標(biāo)值,得結(jié)果如下表:

甲企業(yè):

乙企業(yè):

(1)已知甲企業(yè)的500件零件質(zhì)量指標(biāo)值的樣本方差,該企業(yè)生產(chǎn)的零件質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為質(zhì)量指標(biāo)值的樣本平均數(shù)(注:求時(shí),同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表),近似為樣本方差,試根據(jù)該企業(yè)的抽樣數(shù)據(jù),估計(jì)所生產(chǎn)的零件中,質(zhì)量指標(biāo)值不低于71.92的產(chǎn)品的概率.(精確到0.001)

(2)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并問(wèn)能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為“兩個(gè)分廠生產(chǎn)的零件的質(zhì)量有差異”.

附注:

參考數(shù)據(jù):

參考公式: , ,

.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線(xiàn)過(guò)點(diǎn),且方向向量為;在以為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,圓的極坐標(biāo)方程為.

(1)求直線(xiàn)的參數(shù)方程;

(2)若直線(xiàn)與圓相交于、兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近幾年來(lái),我國(guó)許多地區(qū)經(jīng)常出現(xiàn)干旱現(xiàn)象,為抗旱經(jīng)常要進(jìn)行人工降雨,現(xiàn)由天氣預(yù)報(bào)得知,某地在未來(lái)5天的指定時(shí)間的降雨概率是:前3天均為,后2天均為,5天內(nèi)任何一天的該指定時(shí)間沒(méi)有降雨,則在當(dāng)天實(shí)行人工降雨,否則,當(dāng)天不實(shí)施人工降雨.

(1)求至少有1天需要人工降雨的概率;

(2)求不需要人工降雨的天數(shù)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒子內(nèi)裝有8張卡片,每張卡片上面寫(xiě)著1個(gè)數(shù)字,這8個(gè)數(shù)字各不相同,且奇數(shù)有3個(gè),偶數(shù)有5個(gè).每張卡片被取出的概率相等.

(Ⅰ)如果從盒子中一次隨機(jī)取出2張卡片,并且將取出的2張卡片上的數(shù)字相加得到一個(gè)新數(shù),求所得新數(shù)是偶數(shù)的概率;

(Ⅱ)現(xiàn)從盒子中一次隨機(jī)取出1張卡片,每次取出的卡片都不放回盒子,若取出的卡片上寫(xiě)著的數(shù)是偶數(shù)則停止取出卡片,否則繼續(xù)取出卡片.設(shè)取出了次才停止取出卡片,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù) ,則對(duì)于不同的實(shí)數(shù),函數(shù)的單調(diào)區(qū)間個(gè)數(shù)不可能是( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 5個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案