4.已知函數(shù)f(x)在實數(shù)集R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),若x[f(x)-f′(x)]>0,f(0)=2,函數(shù)g(x)=f(x)-kex(e為自然對數(shù)的底)存在零點,則  )
A.實數(shù)k有最大值2B.實數(shù)k有最小值2C.實數(shù)k有最大值$\frac{2}{e}$D.實數(shù)k有最小值$\frac{2}{e}$

分析 問題轉(zhuǎn)化為求k=$\frac{f(x)}{{e}^{x}}$的最大值,根據(jù)函數(shù)的單調(diào)性求出即可.

解答 解:令g(x)=0,得:k=$\frac{f(x)}{{e}^{x}}$,
∵${[\frac{f(x)}{{e}^{x}}]}^{′}$=$\frac{f′(x)-f(x)}{{e}^{x}}$,
∴x>0時,${[\frac{f(x)}{{e}^{x}}]}^{′}$<0,函數(shù)y=$\frac{f(x)}{{e}^{x}}$遞減,
x<0時,${[\frac{f(x)}{{e}^{x}}]}^{′}$>0,函數(shù)y=$\frac{f(x)}{{e}^{x}}$遞增,
∴函數(shù)y=$\frac{f(x)}{{e}^{x}}$有最大值是$\frac{f(0)}{{e}^{0}}$=2,
即k的最大值是2,
故選:A.

點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=2sinx(sinx+cosx)的性質(zhì)描述正確的是( 。
A.最大值為2B.周期為π的奇函數(shù)
C.關(guān)于點$(\frac{π}{8},0)$中心對稱D.在$[\frac{3π}{8},\frac{7π}{8}]$上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=a•4x+2x+1,其中a∈R.
(1)設(shè)函數(shù)g(x)=lg$\frac{f(x)}{2}$,若當(dāng)x∈(-∞,1]時,g(x)有意義,求a的取值范圍;
(2)是否存在是實數(shù)m,使得關(guān)于x的方程f(x)=m對于任意非正實數(shù)a,均有實數(shù)根?若存在,求m;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.以(1,0)為圓心的圓與直線y=x+m相切于點(0,m),則圓的方程是( 。
A.(x+1)2+y2=1B.(x-1)2+y2=1C.(x+1)2+y2=2D.(x-1)2+y2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=x2-2cosx,對于$[-\frac{2π}{3},\;\frac{2π}{3}]$上的任意x1,x2有如下條件:
①x1>x2;       ②${x_1}^2>{x_2}^2$;   ③x1>|x2|;   ④|x1|>x2;
其中能使f(x1)>f(x2)恒成立的條件是②③ (填寫序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.定義在實數(shù)集R上的函數(shù)y=f(x)是偶函數(shù),當(dāng)x≥0時,f(x)=-4x2+8x-3,求f(x)在R上的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,則滿足不等式f(x)<f(1)的x的取值范圍是( 。
A.(-1,1)B.(-1,0)C.(0,1)D.[-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),右焦點F2($\sqrt{3}$,0),PF2⊥x軸交雙曲線于P點,若P點縱坐標(biāo)為2,則雙曲線離心率e=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.向量$\overrightarrow{m}$=(2sinx,-$\sqrt{3}$),$\overrightarrow{n}$=(2cos2$\frac{x}{2}$-1,cos2x+1),函數(shù)f(x)=$\overrightarrow{m}•\overrightarrow{n}$
(1)求函數(shù)f(x)的對稱軸和對稱中心;
(2)△ABC中內(nèi)角A、B、C的對邊分別為a,b,c,角B為銳角,若f(B)=0,b=2,求△ABC周長的最大值.

查看答案和解析>>

同步練習(xí)冊答案