分析 由分段函數(shù)可知f(-$\frac{1}{2}$)=${2}^{\frac{1}{2}}$,則f[f(-$\frac{1}{2}$)]=f(${2}^{\frac{1}{2}}$)=$lo{g}_{2}{2}^{\frac{1}{2}}=\frac{1}{2}$,畫出分段函數(shù)的圖象,數(shù)形結(jié)合得答案.
解答 解:由分段函數(shù)可知f(-$\frac{1}{2}$)=${2}^{\frac{1}{2}}$,
∴f[f(-$\frac{1}{2}$)]=f(${2}^{\frac{1}{2}}$)=$lo{g}_{2}{2}^{\frac{1}{2}}=\frac{1}{2}$;
由y=f(x)-k=0,
得f(x)=k.
令y=k與y=f(x),
作出函數(shù)y=k與y=f(x)的圖象如圖:
由圖可知,函數(shù)y=f(x)-k有且只有兩個零點,則實數(shù)k的取值范圍是$(\frac{1}{2},+∞)$.
故答案為:$\frac{1}{2}$;($\frac{1}{2}$,+∞).
點評 本題考查分段函數(shù)的應(yīng)用,考查函數(shù)零點的判斷,體現(xiàn)了數(shù)形結(jié)合的解題思想方法,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
患病 | 未患病 | 總計 | |
沒服用藥 | 22 | y | 60 |
服用藥 | x | 50 | 60 |
總計 | 32 | t | 120 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com