已知實(shí)數(shù)x、y滿足
y≥1
y≤2x-1
x+y≤4
,則目標(biāo)函數(shù)z=
x+4y+5
x+1
的最大值與最小值的和是
 
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義即可得到結(jié)論.
解答: 解:z=
x+4y+5
x+1
=
x+1+4(y+1)
x+1
=1+4×
y+1
x+1
,
設(shè)k=
y+1
x+1
,則k的幾何意義是區(qū)域內(nèi)的點(diǎn)到定點(diǎn)D(-1,-1)的斜率,
則z=1+4k,
作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
則DB的斜率最大,DC的斜率最小,
y=1
x+y=4
,解得
x=3
y=1
,即C(3,1),此時(shí)k=
1+1
3+1
=
1
2
,
y=2x-1
x+y=4
,解得
x=
5
3
y=
7
3
,即B(
5
3
,
7
3
),此時(shí)k=
7
3
+1
5
3
+1
=
5
4
,
1
2
≤k≤
5
4

則2≤4k≤5,3≤1+4k≤6,
故3≤z≤6,
則z的最大值與最小值的和為3+6=9,
故答案為:9
點(diǎn)評(píng):本題主要考查了用平面區(qū)域二元一次不等式組,以及直線斜率的計(jì)算,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)和g(x)的圖象關(guān)于原點(diǎn)對(duì)稱,且f(x)=x2+2x.若函數(shù)h(x)=g(x)-λf(x)+1在[-1,1]上是增函數(shù),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位共有老、中、青職工860人,其中青年職工320人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工64人,則該樣本中的老年職工人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立直角坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2
2
cos(θ+
π
4
)
,直線l的參數(shù)方程為
x=t
y=-1+2
2
t
(t為參數(shù)),直線l和圓C交于A,B兩點(diǎn),P是圓C上不同于A,B的任意一點(diǎn).
(Ⅰ)求圓心的極坐標(biāo);
(Ⅱ)求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M(x0,y0)是圓x2+y2=a2外任意一點(diǎn),則直線x0x+y0y=a2與該圓的位置關(guān)系是( 。
A、相切
B、相交
C、相離
D、由點(diǎn)(x0、y0)的位置決定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線x2-
y2
k
=1
的一個(gè)焦點(diǎn)是(3,0),則實(shí)數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,有一塊扇形草地OMN,已知半徑為R,∠MON=
π
2
,現(xiàn)要在其中圈出一塊矩形場地ABCD作為兒童樂園使用,其中點(diǎn)A、B在弧MN上,且線段AB平行于線段MN
(1)若點(diǎn)A為弧MN的一個(gè)三等分點(diǎn),求矩形ABCD的面積S;
(2)當(dāng)A在何處時(shí),矩形ABCD的面積S最大?最大值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若甲乙兩人從6門課程中各選修3門,則甲乙所選的課程中恰有2門相同的選法有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合M={x||x|≤2},N={x|x2-3x≤0},則M∩N=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案