(09年山東蒼山期末文)(14分)設(shè)為奇函數(shù),為常數(shù)。

(1)求的值;

(2)證明:在(1,+∞)內(nèi)單調(diào)遞增;

(3)若對于[3,4]上的每一個(gè)的值,不等式恒成立,求實(shí)數(shù)的取值范圍。

解析:(1)∵為奇函數(shù),∴,

 

檢驗(yàn)(舍),∴

(2)證明:

任取,∴

 

,∴在(1,+∞)內(nèi)單調(diào)遞增。

(3)對于[3,4]上的每一個(gè)的值,不等式恒成立

恒成立

,只需

用定義可證在[3,4]上是增函數(shù),∴

           ∴時(shí)原式恒成立。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年山東蒼山期末文)(12分)

設(shè)O點(diǎn)為坐標(biāo)原點(diǎn),曲線上有兩點(diǎn),滿足關(guān)于直線對稱,又滿足。

(1)求的值;

(2)求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年山東蒼山期末文)(12分)

如下圖所示:在直三棱柱ABC―A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的中點(diǎn)。

(1)求證:AC⊥BC1;

(2)求證:AC1∥平面CDB1;

(3)求異面直線AC1與B1C所成角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年山東蒼山期末文)(12分)

設(shè)函數(shù)其中向量,,。

(1)求的最小正周期與單調(diào)減區(qū)間;

(2)在△ABC中,分別是角A、B、C的對邊,已知,,△ABC的面積是為,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年山東蒼山期末文)(12分)已知。

(1)求的值;

(2)求的值。

查看答案和解析>>

同步練習(xí)冊答案