如圖,在四棱錐O-ABCD中,底面ABCD四邊長(zhǎng)為1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M為OA的中點(diǎn),N為BC的中點(diǎn)。
(1)證明:直線(xiàn)MN∥平面OCD;
(2)求異面直線(xiàn)AB與MD所成角的大;
(3)求點(diǎn)B到平面OCD的距離。
解:(1)取的中點(diǎn)E,連接、NE


又∵,
∴平面∥平面
∥平面
(2)∵,
為異面直線(xiàn)AB與MD所成的角(或其補(bǔ)角)
于點(diǎn)P,連接
平面,

,

,
,
所以,異面直線(xiàn)AB與MD所成的角為
(3)∵∥平面,
所以點(diǎn)B和點(diǎn)A到平面的距離相等。
連接OP,過(guò)點(diǎn)A作于點(diǎn)Q

平面,

又∵,
平面
線(xiàn)段AQ的長(zhǎng)就是點(diǎn)A到平面OCD的距離,與點(diǎn)B到平面OCD的距離相等

,

所以,點(diǎn)B到平面OCD的距離為。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐O-ABCD中,底面ABCD是邊長(zhǎng)為1的正方形,OA⊥底面ABCD,OA=2,M為OA的中點(diǎn),N為BC中點(diǎn),以A為原點(diǎn),建立適當(dāng)?shù)目臻g直角坐標(biāo)系,利用空間向量解答以下問(wèn)題
(1)證明:直線(xiàn)BD⊥OC
(2)證明:直線(xiàn)MN∥平面OCD
(3)求異面直線(xiàn)AB與OC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐O-ABCD中,底面ABCD四邊長(zhǎng)為1的菱形,∠ABC=
π4
,OA⊥底面ABCD,OA=2,M為OA的中點(diǎn),N為BC的中點(diǎn).
(Ⅰ)證明:直線(xiàn)MN∥平面OCD;
(Ⅱ)求異面直線(xiàn)AB與MD所成角的大小;
(Ⅲ)求二面角A-OD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐O-ABCD中,底面ABCD四邊長(zhǎng)為1的菱形,∠ABC=
π3
,OA⊥底面ABCD,OA=2,M為OA的中點(diǎn).
(1)求三棱錐B-OCD的體積;
(2)求異面直線(xiàn)AB與MD所成角的余弦值;
注:若直線(xiàn)a⊥平面α,則直線(xiàn)a與平面α內(nèi)的所有直線(xiàn)都垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在四棱錐O-ABCD中,底面ABCD四邊長(zhǎng)為1的菱形,∠ABC=
π4
,OA⊥底面ABCD,OA=2,M為OA的中點(diǎn),N為BC的中點(diǎn)
(1)求三棱錐B-OCD的體積;
(2)求異面直線(xiàn)AB與MD所成角的大小;
注:若直線(xiàn)a⊥平面α,則直線(xiàn)a與平面α內(nèi)的所有直線(xiàn)都垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇同步題 題型:解答題

如圖,在四棱錐O﹣ABCD中,底面ABCD四邊長(zhǎng)為1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M為OA的中點(diǎn),N為BC的中點(diǎn).
(Ⅰ)證明:直線(xiàn)MN∥平面OCD;
(Ⅱ)求異面直線(xiàn)AB與MD所成角的大。
(Ⅲ)求二面角A﹣OD﹣C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案