已知A,B是兩個不同的點,m,n是兩條不重合的直線,α,β是兩個不重合的平面,給出下列4個命題:
①若m∩n=A,A∈α,B∈m,則B∈α;
②若m?α,A∈m,則A∈α;
③若m?α,m⊥β,則α⊥β;
④若m?α,n?β,m∥n,則α∥β,
其中真命題為( 。
分析:根據(jù)空間點線面之間的關系,可判斷①②;根據(jù)面面垂直的判定定理,可判斷③;根據(jù)空間面面平行的位置關系及線線平行的位置關系,可判斷④
解答:解:若m∩n=A,A∈α,B∈m,當m?α時,可得B∈α;當m∩α=A時,B∉α;故①為假命題;
若m?α,A∈m,則A∈α,故②為真命題
若m?α,m⊥β,則由面面垂直的判定定理得到α⊥β,故③為真命題;
若m?α,n?β,m∥n,則α與β可能平行也可能相交,故④為假命題;
其中真命題為②③
故選C
點評:本題以命題的真假判斷為載體考查了空間直線與平面之間的位置關系,平面與平面之間的位置關系,難度不大,屬于基礎題目
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知A、B是兩個不同的點,m、n是兩條不重合的直線,α、β是兩個不重合的平面,則①m?α,A∈m⇒A∈α;②m∩n=A,A∈α,B∈m⇒B∈α;③m?α,m⊥β⇒α⊥β;④m?α,n?β,m∥n⇒α∥β.其中真命題為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•浙江模擬)已知A、B是兩個不同的點,m、n是兩條不重合的直線,α、β是兩個不重合的平面,則①m?α,A∈m⇒A∈α;②m∩n=A,A∈α,B∈m⇒B∈α;③m?α,n?β,m∥n⇒α∥β;④m?α,m⊥β⇒α⊥β.其中真命題為( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省高三第一次月考理科數(shù)學試卷(解析版) 題型:選擇題

已知A,B是兩個不同的點,m,n是兩條不重合的直線,,是兩個不重合的平面,給出下列4個命題:①若,,,則;②若,,則;③若,,則;④若,,則,其中真命題為(   )

A.①③             B.①④             C.②③             D.②④

 

查看答案和解析>>

科目:高中數(shù)學 來源:浙江模擬 題型:單選題

已知A、B是兩個不同的點,m、n是兩條不重合的直線,α、β是兩個不重合的平面,則①m?α,A∈m?A∈α;②m∩n=A,A∈α,B∈m?B∈α;③m?α,n?β,mn?αβ;④m?α,m⊥β?α⊥β.其中真命題為( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

同步練習冊答案