滿足條件 {1,2}∪B={1,2,3,4,5}的所有集合B的個數(shù)為(  )
A、8B、4C、3D、2
考點(diǎn):并集及其運(yùn)算
專題:集合
分析:根據(jù)并集關(guān)系進(jìn)行求解即可.
解答: 解:若 {1,2}∪B={1,2,3,4,5},
則B={3,4,5},{1,3,4,5},{2,3,4,5},{1,2,3,4,5},
共有4個,
故選:B.
點(diǎn)評:本題主要考查集合關(guān)系的應(yīng)用,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+
1
x
+ax,x∈(0,+∞)(a是實(shí)數(shù)),g(x)=
2x
x2+1
+1.
(1)若函數(shù)f(x)在[1,+∞)上是單調(diào)函數(shù),求a的取值范圍;
(2)是否存在正實(shí)數(shù)a滿足:對于任意x1∈[1,2],總存在x2∈[1,2],使得f(x1)=g(x2)成立,若存在,求出a的范圍;若不存在,請說明理由;
(3)若數(shù)列{xn}滿足x1=
1
2
,xn+1=g(xn)-1,求證:
(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
+…+
(xn-xn+1)2
xnxn+1
5
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與原點(diǎn)距離為
2
2
,斜率為1的直線方程為( 。
A、x+y+1=0或x+y-1=0
B、x+y+
2
=0或x+y-
2
=0
C、x-y+1=0或x-y-1=0
D、x-y+
2
=0或x+y-
2
=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=lg(3-x)+
16-x2
的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2
|x-4|
,(x≠4)
a,(x=4)
,若函數(shù)y=f(x)-2有3個零點(diǎn),則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
sin(ωx),其中常數(shù)ω>0.
(1)若y=f(x)的圖象相鄰兩條對稱軸的距離為
π
2
,求ω的值;
(2)在(1)的條件下,將函數(shù)y=f(x)的圖象向右平移
π
6
個單位,再向下平移1個單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在[0,b](b>0)上至少含有10個零點(diǎn),求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以A表示值域?yàn)镽的函數(shù)組成的集合,B表示具有如下性質(zhì)的函數(shù)φ(x)組成的集合:對于函數(shù)φ(x),存在一個正數(shù)M,使得函數(shù)φ(x)的值域包含于區(qū)間[-M,M].例如:當(dāng)φ1(x)=x3,φ2(x)=sinx時,φ1(x)∈A,φ2(x)∈B.現(xiàn)有定義域均為D的函數(shù)f(x),g(x),給出下面結(jié)論:
①如果f(x)∈B,那么f(x)可能沒有最大值;
②如果f(x)∈A,g(x)∈A,那么一定有f(x)+g(x)∈A;
③如果f(x)∈A,g(x)∈B,那么一定有f(x)+g(x)∈A;
④如果f(x)∈A,那么對任意b∈R,總存在a∈D,使得f(a)=b.
其中正確的有
 
(寫出所有正確結(jié)論的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)f′(x),滿足f′(x)<f(x),f(2+x)=f(2-x),f(4)=1,則不等式f(x)<ex的解集為( 。
A、(-2,+∞)
B、(0,+∞)
C、(1,+∞)
D、(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的焦點(diǎn)垂直于x軸的弦長為
a
2
,則雙曲線
x2
a2
-
y2
b2
=1
的離心率為
 

查看答案和解析>>

同步練習(xí)冊答案