【題目】已知圓的一條直角是橢圓的長軸,動(dòng)直線,當(dāng)過橢圓上一點(diǎn)且與圓相交于點(diǎn)時(shí),弦的最小值為.

(1)求圓即橢圓的方程;

(2)若直線是橢圓的一條切線,是切線上兩個(gè)點(diǎn),其橫坐標(biāo)分別為,那么以為直徑的圓是否經(jīng)過軸上的定點(diǎn)?如果存在,求出定點(diǎn)坐標(biāo);若不存在,請說明理由.

【答案】(1).(2)過定點(diǎn).

【解析】試題分析:(1)先根據(jù)垂徑定理求半徑,再根據(jù)點(diǎn)在橢圓上解得(2)設(shè)點(diǎn)的坐標(biāo),化簡條件,再聯(lián)立切線方程與橢圓方程,根據(jù)判別式為零得等量關(guān)系,代入并化簡可得,即得結(jié)論

試題解析:(1)當(dāng)時(shí),最小,,

由已知,可知,

又點(diǎn)在橢圓上上,

綜上,圓的方程為

橢圓的方程為.

(2)聯(lián)立方程,得到,由與橢圓相切,得到,①

易知,設(shè)以為直徑的圓經(jīng)過,設(shè)則有

,②

①②可知, ,

要使上式成立,有只有當(dāng),故經(jīng)過定點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是邊長為3的正方形, 平面, 平面 .

(1)證明:平面平面;

(2)在上是否存在一點(diǎn),使平面將幾何體分成上下兩部分的體積比為?若存在,求出點(diǎn)的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于古典概型的說法中正確的是( )

①試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);

②每個(gè)事件出現(xiàn)的可能性相等;

③每個(gè)基本事件出現(xiàn)的可能性相等;

④基本事件的總數(shù)為n,隨機(jī)事件A若包含k個(gè)基本事件,則.

A. ②④ B. ③④ C. ①④ D. ①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響.對近8年的年宣傳費(fèi)xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

表中 ,

(Ⅰ)根據(jù)散點(diǎn)圖判斷,y=a+bx與y=c+d哪一個(gè)適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型?(給出判斷即可,不必說明理由)

(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;

(Ⅲ)已知這種產(chǎn)品的年利潤z與x、y的關(guān)系為z=0.2y-x.根據(jù)(Ⅱ)的結(jié)果回答下列問題:

(ⅰ)年宣傳費(fèi)x=49時(shí),年銷售量及年利潤的預(yù)報(bào)值是多少?

(ⅱ)年宣傳費(fèi)x為何值時(shí),年利潤的預(yù)報(bào)值最大?

附:對于一組數(shù)據(jù),,……,,其回歸線的斜率和截距的最小二乘估計(jì)分別為:

46.6

563

6.8

289.8

1.6

1469

108.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)為橢圓的左焦點(diǎn),直線被橢圓截得弦長為

(1)求橢圓的方程;

(2)圓與橢圓交于兩點(diǎn), 為線段上任意一點(diǎn),直線交橢圓兩點(diǎn)為圓的直徑,且直線的斜率大于,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若恒成立,求實(shí)數(shù)的取值范圍;

(2)已知關(guān)于的方程有兩個(gè)實(shí)根,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某籃球隊(duì)甲、乙兩名運(yùn)動(dòng)員練習(xí)罰球,每人練習(xí)10組,每組罰球40個(gè).命中個(gè)數(shù)的莖葉圖如圖,則下面結(jié)論中錯(cuò)誤的一個(gè)是(  )

A. 甲的極差是29 B. 甲的中位數(shù)是24

C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校因?yàn)楹傺悠陂_學(xué),根據(jù)教育部停課不停學(xué)的指示,該學(xué)校組織學(xué)生線上教學(xué),高一年級在線上教學(xué)一個(gè)月后,為了了解線上教學(xué)的效果,在線上組織了數(shù)學(xué)學(xué)科考試,隨機(jī)抽取50名學(xué)生的成績并制成頻率分布直方圖如圖所示.

1)求m的值,并估計(jì)高一年級所有學(xué)生數(shù)學(xué)成績在分的學(xué)生所占的百分比;

2)分別估計(jì)這50名學(xué)生數(shù)學(xué)成績的平均數(shù)和中位數(shù).(同一組中的數(shù)據(jù)以該組區(qū)間的中點(diǎn)值作代表,結(jié)果精確到0.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)支出與銷售額 (單位:萬元)具有較強(qiáng)的相關(guān)性,且兩者之間有如下對應(yīng)數(shù)據(jù):

2

4

5

6

8

28

36

52

56

78

(1)求關(guān)于的線性回歸方程;

(2)根據(jù)(1)中的線性回歸方程,當(dāng)廣告費(fèi)支出為10萬元時(shí),預(yù)測銷售額是多少?

參考數(shù)據(jù): ,

附:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:

,.

查看答案和解析>>

同步練習(xí)冊答案