【題目】已知

)當時,判斷在定義域上的單調(diào)性;

)若上的最小值為,求的值.

【答案】1f(x)(0,+∞)上是單調(diào)遞增函數(shù)

2a=-.

【解析】

試題分析:(1)利用導數(shù)判定函數(shù)單調(diào)性:先求導數(shù)f ′x)=.因為定義域為(0,),a>0 所以f ′x>0,故fx)在(0,)上是單調(diào)遞增函數(shù).2)先分類確定fx)在[1,e]上的最小值:a≥1,f ′x≥0fx)在[1,e]上為增函數(shù),fxminf1)=-a,∴a=-(舍去).a≤e,f ′x≤0, fx)在[1,e]上為減函數(shù),fxminfe)=1,∴a=-(舍去).若-e<a<1,令f ′x)=0,得x=-a. fxminf(-a)=ln(-a)+1a=-.

試題解析:解:(1)由題得fx)的定義域為(0,),且 f ′x)=.

∵a>0,∴f ′x>0,故fx)在(0,)上是單調(diào)遞增函數(shù). 3’

2)由(1)可知:f ′x)=,

a≥1,則xa≥0,即f ′x≥0[1,e]上恒成立,此時fx)在[1,e]上為增函數(shù),

∴fxminf1)=-a∴a=-(舍去).

a≤e,則xa≤0,即f ′x≤0[1,e]上恒成立,此時fx)在[1,e]上為減函數(shù),

∴fxminfe)=1∴a=-(舍去).

若-e<a<1,令f′x)=0,得x=-a.

1<x<a時,f ′x<0,∴fx)在(1,a)上為減函數(shù);

當-a<x<e時,f ′x>0∴fx)在(-a,e)上為增函數(shù),

∴fxminf(-a)=ln(-a)+1a=-.

綜上可知:a=-. 12’

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為,且成績分布在分數(shù)在以上(含的同學獲獎. 按文理科用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖(見下圖).

I)在答題卡上填寫下面的列聯(lián)表,能否有超過的把握認為獲獎與學生的文理科有關(guān)”?

文科生

理科生

合計

獲獎

不獲獎

合計

II將上述調(diào)査所得的頻率視為概率,現(xiàn)從該校參與競賽的學生中,任意抽取名學生獲獎學生人數(shù)為,求的分布列及數(shù)學期望.

附表及公式:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某人做某件事,成功的概率只有0.1.用計算器計算,如果他嘗試10次,而且每次是否成功都相互獨立,則他至少有一次成功的概率為多少(精確到0.01)?如果他嘗試20次呢?如果要保證至少成功一次的概率不小于90%,則他至少要嘗試多少次?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在多面體,底面是梯形,四邊形是正方形,,,,

(1)求證平面平面

(2)設(shè)為線段上一點,,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校在本校任選了一個班級,對全班50名學生進行了作業(yè)量的調(diào)查,根據(jù)調(diào)查結(jié)果統(tǒng)計后,得到如下的列聯(lián)表,已知在這50人中隨機抽取2人,這2人都“認為作業(yè)量大”的概率為.

認為作業(yè)量大

認為作業(yè)量不大

合計

男生

18

女生

17

合計

50

1)請完成上面的列聯(lián)表;

2)根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認為“認為作業(yè)量大”與“性別”有關(guān)?

附表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

附:(其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地某路無人駕駛公交車發(fā)車時間間隔(單位:分鐘)滿足,.經(jīng)測算,該路無人駕駛公交車載客量與發(fā)車時間間隔滿足:,其中

1)求,并說明的實際意義;

2)若該路公交車每分鐘的凈收益(元),問當發(fā)車時間間隔為多少時,該路公交車每分鐘的凈收益最大?并求每分鐘的最大凈收益.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代儒家要求學生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡稱“六藝”,某高中學校為弘揚“六藝”的傳統(tǒng)文化,分別進行了主題為“禮、樂、射、御、書、數(shù)”六場傳統(tǒng)文化知識競賽,現(xiàn)有甲、乙、丙三位選手進入了前三名的最后角逐,規(guī)定:每場知識競賽前三名的得分都分別為;選手最后得分為各場得分之和,在六場比賽后,已知甲最后得分為分,乙和丙最后得分都是分,且乙在其中一場比賽中獲得第一名,下列說法正確的是( )

A. 乙有四場比賽獲得第三名

B. 每場比賽第一名得分

C. 甲可能有一場比賽獲得第二名

D. 丙可能有一場比賽獲得第一名

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐中,底面為平行四邊形,點、、分別在、、.

1)若,求證:平面平面;

2)若滿足,則點滿足什么條件時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,平行四邊形OABC,頂點O,AC分別表示0,32i,-24i,試求:

(1) 所表示的復數(shù);

(2)對角線所表示的復數(shù);

(3)B點對應的復數(shù).

查看答案和解析>>

同步練習冊答案