A. | $\frac{x^2}{16}+\frac{y^2}{9}=1$ | B. | $\frac{x^2}{9}+\frac{y^2}{16}=1$ | C. | $\frac{x^2}{25}+\frac{y^2}{16}=1$ | D. | $\frac{x^2}{16}+\frac{y^2}{25}=1$ |
分析 利用已知條件求出橢圓的長半軸與短半軸的大小,即可求解所求的橢圓方程.
解答 解:橢圓$\frac{x^2}{25}+\frac{y^2}{16}=1$的兩個焦點(diǎn)(±3,0)及短軸長為:8,
可得以橢圓$\frac{x^2}{25}+\frac{y^2}{16}=1$的兩個焦點(diǎn)及短軸的兩個端點(diǎn)為四個頂點(diǎn)的橢圓的a=4,b=3,焦點(diǎn)在y軸上,
所求的橢圓方程為:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{16}=0$.
故選:B.
點(diǎn)評 本題考查橢圓的簡單性質(zhì)以及橢圓方程的求法,考查計算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,4$\sqrt{2}$) | B. | (1,4) | C. | (-∞,4$\sqrt{2}$) | D. | ($\sqrt{2}$,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({1,\frac{π}{6}})$ | B. | $({1,\frac{5π}{6}})$ | C. | $({1,\frac{7π}{6}})$ | D. | $({1,\frac{11π}{6}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com