【題目】已知橢圓:的長軸長為,右頂點到左焦點的距離為,直線l:與橢圓交于A,B兩點.
求橢圓的方程;
若A為橢圓的上項點,M為AB中點,O為坐標原點,連接OM并延長交橢圓于N,,求k的值.
若原點O到直線l的距離為1,,當時,求的面積S的范圍.
【答案】(1); (2); (3).
【解析】
先根據(jù)已知條件可求出a、c的值,結(jié)合a、b、c的值可得出b的值,進而可求出橢圓的標準方程;
先得出直線l的方程為,將直線l的方程代入橢圓方程可求出點B的坐標,利用中點坐標公式可得出點M的坐標,根據(jù)已知條件可得出點N的坐標,再將點N的坐標代入橢圓的方程,即可求出k的值;
利用原點O到直線l的距離可得出,將直線l的方程與橢圓方程聯(lián)立,列出韋達定理,將韋達定理代入,結(jié)合的取值范圍可得出的取值范圍,并求出線段AB的長度的表達式,可求出的取值范圍,再利用三角形的面積公式可求出S的取值范圍.
由題意可知,,于是得到,
因為右頂點到左焦點的距離為,所以,,則,
因此,橢圓的方程為;
當點A為橢圓的上頂點時,點A的坐標為,則,直線l的方程為,
將直線l的方程代入橢圓的方程并化簡得,解得,,
所以點B的坐標為,
由于點M為線段AB的中點,則點M的坐標為,
由于,所以,點N的坐標為,
將點N的坐標代入橢圓的方程得,化簡得,解得;
由于點O到直線l的距離為1,則有,所以,.
設點、,將直線l的方程代入橢圓方程并化簡得,
由韋達定理可得,,
,
由于,即,解得,
線段AB的長為
,
所以,.
因此,的面積S的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓P恒過定點,且與直線相切.
(Ⅰ)求動圓P圓心的軌跡M的方程;
(Ⅱ)正方形ABCD中,一條邊AB在直線y=x+4上,另外兩點C、D在軌跡M上,求正方形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,四點中恰有三點在橢圓上.
(1)求橢圓C的方程
(2)橢圓C上是否存在不同的兩點M,N關于直線對稱?若存在,請求出直線MN的方程,若不存在,請說明理由.
(3)設直線l不經(jīng)過點且與C相交于A,B兩點,若直線與直線的斜率之和為1,求證直線l必過定點,并求出這個定點坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐S-ABCD的底面是邊長為1的正方形,則棱SB垂直于底面.
(1)求證:平面SBD⊥平面SAC;
(2)若SA與平面SCD所成角的正弦值為,求SB的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知項數(shù)為項的有窮數(shù)列,若同時滿足以下三個條件:
,為正整數(shù);或1,其中,3,,;
任取數(shù)列中的兩項,,剩下的項中一定存在兩項,,滿足,則稱數(shù)列為數(shù)列.
若數(shù)列是首項為1,公差為1,項數(shù)為6項的等差數(shù)列,判斷數(shù)列是否是數(shù)列,并說明理由.
當時,設數(shù)列中1出現(xiàn)次,2出現(xiàn)次,3出現(xiàn)次,其中,,.
求證:,,;
當時,求數(shù)列中項數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機構(gòu)認為該事件在一段時間沒有發(fā)生在規(guī)模群體感染的標志為“連續(xù)10天,每天新增疑似病例不超過7人”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標志的是
A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0
C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高考改革是教育體制改革中的重點領域和關鍵環(huán)節(jié),全社會極其關注.近年來,在新高考改革中,打破文理分科的“”模式初露端倪.其中“”指必考科目語文、數(shù)學、外語,“”指考生根據(jù)本人興趣特長和擬報考學校及專業(yè)的要求,從物理、化學、生物、歷史、政治、地理六科中選擇門作為選考科目,其中語、數(shù)、外三門課各占分,選考科目成績采用“賦分制”,即原始分數(shù)不直接用,而是按照學生分數(shù)在本科目考試的排名來劃分等級并以此打分得到最后得分.假定省規(guī)定:選考科目按考生成績從高到低排列,按照占總體的,以此賦分分、分、分、分.為了讓學生們體驗“賦分制”計算成績的方法,省某高中高一()班(共人)舉行了以此摸底考試(選考科目全考,單科全班排名,每名學生選三科計算成績),已知這次摸底考試中的物理成績(滿分分)頻率分布直方圖,化學成績(滿分分)莖葉圖如下圖所示,小明同學在這次考試中物理分,化學多分.
(1)求小明物理成績的最后得分;
(2)若小明的化學成績最后得分為分,求小明的原始成績的可能值;
(3)若小明必選物理,其他兩科在剩下的五科中任選,求小明此次考試選考科目包括化學的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】4個不同的紅球和6個不同的白球放入同一個袋中,現(xiàn)從中取出4個球.
(1)若取出的紅球的個數(shù)不少于白球的個數(shù),則有多少不同的取法?
(2)取出一個紅球記2分,取出一個白球記1分,若取出4個球所得總分不少于5分,則有多少種不同取法.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com