【題目】海南盛產(chǎn)各種名貴樹(shù)木,如紫檀、黃花梨等.在實(shí)際測(cè)量單根原木材體積時(shí),可以檢量木材的實(shí)際長(zhǎng)度(檢尺長(zhǎng))和小頭直徑(檢尺徑),再通過(guò)國(guó)家公布的原木材積表直接查詢(xún)得到,原木材積表的部分?jǐn)?shù)據(jù)如下所示:
檢尺徑 () | 檢尺長(zhǎng)() | ||||
2.0 | 2.2 | 2.4 | 2.5 | 2.6 | |
材積() | |||||
8 | 0.0130 | 0.0150 | 0.0160 | 0.0170 | 0.0180 |
10 | 0.0190 | 0.0220 | 0.0240 | 0.0250 | 0.0260 |
12 | 0.0270 | 0.0300 | 0.0330 | 0.0350 | 0.0370 |
14 | 0.0360 | 0.0400 | 0.0450 | 0.0470 | 0.0490 |
16 | 0.0470 | 0.0520 | 0.0580 | 0.0600 | 0.0630 |
18 | 0.0590 | 0.0650 | 0.0720 | 0.0760 | 0.0790 |
20 | 0.0720 | 0.0800 | 0.0880 | 0.0920 | 0.0970 |
22 | 0.0860 | 0.0960 | 0.1060 | 0.1110 | 0.1160 |
24 | 0.1020 | 0.1140 | 0.1250 | 0.1310 | 0.1370 |
若小李購(gòu)買(mǎi)了兩根紫檀原木,一根檢尺長(zhǎng)為,檢尺徑為,另一根檢尺長(zhǎng)為,檢尺徑為,根據(jù)上表,可知兩根原木的材積之和為______.
【答案】0.111
【解析】
由圖表找到對(duì)應(yīng)的數(shù)據(jù),直接求和即可.
根據(jù)圖表,檢尺長(zhǎng)為,檢尺徑為的原木的材積為,檢尺長(zhǎng)為,檢尺徑為的原木的材積為,則材積之和為.
故答案為:0.111
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線(xiàn)C的參數(shù)方程為(為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程為.
(1)求曲線(xiàn)C的普通方程和直線(xiàn)l的直角坐標(biāo)方程;
(2)點(diǎn)P是曲線(xiàn)C上的動(dòng)點(diǎn),求P到直線(xiàn)l的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱柱中,四邊形ABCD為平行四邊形,且點(diǎn)在底面上的投影H恰為CD的中點(diǎn).
(1)棱BC上存在一點(diǎn)N,使得AD⊥平面,試確定點(diǎn)N的位置,說(shuō)明理由;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某居民區(qū)內(nèi)有一直角梯形區(qū)域,,,百米,百米.該區(qū)域內(nèi)原有道路,現(xiàn)新修一條直道(寬度忽略不計(jì)),點(diǎn)在道路上(異于,兩點(diǎn)),,.
(1)用表示直道的長(zhǎng)度;
(2)計(jì)劃在區(qū)域內(nèi)修建健身廣場(chǎng),在區(qū)域內(nèi)種植花草.已知修建健身廣場(chǎng)的成本為每平方百米4萬(wàn)元,種植花草的成本為每平方百米2萬(wàn)元,新建道路的成本為每百米4萬(wàn)元,求以上三項(xiàng)費(fèi)用總和的最小值(單位:萬(wàn)元).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,四邊形ABCD是平行四邊形,,,.
(1)求PC的長(zhǎng);
(2)求AP與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若在上單調(diào)遞增,求的取值范圍;
(2)證明:當(dāng)時(shí),不等式在上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(0,4),拋物線(xiàn)C:x2=2py(0<p<4)的準(zhǔn)線(xiàn)為1,點(diǎn)P在C上,作PH⊥l于H,且|PH|=|PA|,∠APH=120°,則拋物線(xiàn)方程為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)C:,過(guò)點(diǎn)且互相垂直的兩條動(dòng)直線(xiàn),與拋物線(xiàn)C分別交于P,Q和M,N.
(1)求四邊形面積的取值范圍;
(2)記線(xiàn)段和的中點(diǎn)分別為E,F,求證:直線(xiàn)恒過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐P-ABCD中,底面ABCD為菱形,且,側(cè)面PAD是正三角形,其所在的平面垂直于底面ABCD,點(diǎn)G為AD的中點(diǎn).
(1)求證:BG面PAD;
(2)E是BC的中點(diǎn),在PC上求一點(diǎn)F,使得PG面DEF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com