【題目】在平面直角坐標(biāo)系中,設(shè)橢圓的下頂點(diǎn)為,右焦點(diǎn)為,離心率為.已知點(diǎn)是橢圓上一點(diǎn),當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),原點(diǎn)到直線的距離為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與圓:相交于點(diǎn)(異于點(diǎn)),設(shè)點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,直線與橢圓相交于點(diǎn)(異于點(diǎn)).①若,求的面積;②設(shè)直線的斜率為,直線的斜率為,求證:是定值.

【答案】(1)(2)見(jiàn)證明

【解析】

(1)運(yùn)用橢圓的離心率公式以及點(diǎn)到直線的距離公式,解方程可得,,,進(jìn)而得到所求橢圓方程;(2)設(shè)直線的斜率為,則直線的方程為,聯(lián)立橢圓方程可得的坐標(biāo),聯(lián)立圓方程可得的坐標(biāo),運(yùn)用兩直線垂直的條件:斜率之積為,求得的坐標(biāo),①由可得,求得坐標(biāo),以及,,由的面積為,計(jì)算可得;②運(yùn)用兩點(diǎn)的斜率公式,分別計(jì)算線的斜率為,直線的斜率為,即可得證.

(1)據(jù)題意,橢圓的離心率為,即.①

當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),直線的方程為,即,

由原點(diǎn)到直線的距離為,可知,

.③

聯(lián)立①②可得,,,故.

所以橢圓的方程為.

(2)據(jù)題意,直線的斜率存在,且不為0,

設(shè)直線的斜率為,則直線的方程為,

聯(lián)立,整理可得,

所以.

所以點(diǎn)的坐標(biāo)為,

聯(lián)立,

整理可得,所以.

所以點(diǎn)的坐標(biāo)為.

顯然,是圓的直徑,故,

所以直線的方程為.

代替,得點(diǎn)的坐標(biāo)為,

.

①由可得,,

,解得.

根據(jù)圖形的對(duì)稱性,不妨取,

則點(diǎn)的坐標(biāo)分別為,

,.

所以的面積為.

②證明:直線的斜率

直線的斜率.

所以為定值,得證.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)如圖,長(zhǎng)方形材料中,已知,.點(diǎn)為材料內(nèi)部一點(diǎn),,且,. 現(xiàn)要在長(zhǎng)方形材料中裁剪出四邊形材料,滿足,點(diǎn)分別在邊,上.

(1)設(shè),試將四邊形材料的面積表示為的函數(shù),并指明的取值范圍;

(2)試確定點(diǎn)上的位置,使得四邊形材料的面積最小,并求出其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體,則下列四個(gè)命題:

①點(diǎn)在直線上運(yùn)動(dòng)時(shí),直線與直線所成角的大小不變

②點(diǎn)在直線上運(yùn)動(dòng)時(shí),直線與平面所成角的大小不變

③點(diǎn)在直線上運(yùn)動(dòng)時(shí),二面角的大小不變

④點(diǎn)在直線上運(yùn)動(dòng)時(shí),三棱錐的體積不變

其中的真命題是

A.①③B.③④C.①②④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,圓經(jīng)過(guò)伸縮變換后得到曲線以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長(zhǎng)度,建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)求曲線的直角坐標(biāo)方程及直線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)上一動(dòng)點(diǎn),求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)若在區(qū)間上不是單調(diào)函數(shù),求實(shí)數(shù)的范圍;

(2)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),設(shè),對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn),,使得是以為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,而且此三角形斜邊中點(diǎn)在軸上?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面是正方形, 平面,,點(diǎn)上的點(diǎn),且 .

(1)求證:對(duì)任意的 ,都有.

(2)設(shè)二面角C-AE-D的大小為 ,直線BE與平面所成的角為 ,

,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的方程為,.

1)若直線軸、軸上的截距之和為-1,求坐標(biāo)原點(diǎn)到直線的距離;

2)若直線與直線分別相交于、兩點(diǎn),點(diǎn)、兩點(diǎn)的距離相等,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中是真命題的是  

A. 命題“若,則”的否命題是“若,則

B. 為假命題,則p,q均為假命題

C. 命題p,,則,

D. ”是“函數(shù)為偶函數(shù)”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知球O為三棱錐SABC的外接球, ,則球O的表面積是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案