1.若平面α的一個(gè)法向量為$\overrightarrow{n}$=(4,1,1),直線l的一個(gè)方向向量為$\overrightarrow{a}$=(-2,-3,3),則l與α所成角的正弦值為$\frac{4\sqrt{11}}{33}$.

分析 設(shè)l與α所成角為θ,由sinθ=|cos<$\overrightarrow{n},\overrightarrow{a}$>|,能求出l與α所成角的正弦值.

解答 解:∵平面α的一個(gè)法向量為$\overrightarrow{n}$=(4,1,1),直線l的一個(gè)方向向量為$\overrightarrow{a}$=(-2,-3,3),
設(shè)l與α所成角為θ,
則sinθ=|cos<$\overrightarrow{n},\overrightarrow{a}$>|=$\frac{|\overrightarrow{n}•\overrightarrow{a}|}{|\overrightarrow{n}|•|\overrightarrow{a}|}$=$\frac{8}{\sqrt{18}•\sqrt{22}}$=$\frac{4\sqrt{11}}{33}$.
∴l(xiāng)與α所成角的正弦值為$\frac{4\sqrt{11}}{33}$.
故答案為:$\frac{4\sqrt{11}}{33}$.

點(diǎn)評(píng) 本題考查直線與平面所成角的正弦值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=2x+1,g(x)=x2+x
(1)數(shù)列{an}滿足a1>0,an+1=f(an),若$\frac{1}{{1+{a_1}}}+\frac{1}{{1+{a_2}}}+…+\frac{1}{{1+{a_n}}}<\frac{1}{2}$對(duì)?n∈N+恒成立,求a1的取值范圍.
(2)數(shù)列{bn}滿足b1=1,bn+1=g(bn),記${c_n}=\frac{1}{{1+{b_n}}},{S_k}$為數(shù)列{cn}的前k項(xiàng)的和,Tk為數(shù)列{cn}的前k項(xiàng)的積,求證$\frac{T_1}{{{S_1}+{T_1}}}+\frac{T_2}{{{S_2}+{T_2}}}+…+\frac{T_n}{{{S_n}+{T_n}}}<\frac{7}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)函數(shù)f(x)=x2+3x+3-a•ex(a為非零實(shí)數(shù)),若f(x)有且僅有一個(gè)零點(diǎn),則a的取值范圍為(0,e)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$y=3sin(2x+\frac{π}{4}),x∈[0,π]$
(1)求函數(shù)的單調(diào)區(qū)間
(2)求使函數(shù)取得最大值、最小值時(shí)的自變量x的值,并分別寫出最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在邊長(zhǎng)為1的等邊△ABC中D、E分別為AB、AC上的點(diǎn),點(diǎn)A關(guān)于直線DE的對(duì)稱點(diǎn)A1恰好在線段BC上,
(1)∠A1AB=θ∈[0,$\frac{π}{3}$],用θ表示AD;
(2)求AD長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在極坐標(biāo)系中,點(diǎn)M(3,$\frac{π}{3}$)和點(diǎn)N(3,$\frac{2}{3}$π)的位置關(guān)系是( 。
A.關(guān)于極軸所在直線對(duì)稱B.重合
C.關(guān)于直線$θ=\frac{π}{2}(ρ∈R)$對(duì)稱D.關(guān)于極點(diǎn)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)集合A={x||x-1|-|x-5|≤-2},集合B為函數(shù)y=lg(x-1)的定義域,則A∩B=(  )
A.(1,2)B.[1,2]C.[1,2)D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知A(2,3),B(1,4),且$\frac{1}{2}$$\overrightarrow{AB}$=(sinx,cosy),x,y∈(-$\frac{π}{2}$,$\frac{π}{2}$),則x+y=$\frac{π}{6}$或-$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.平面上四個(gè)點(diǎn)P,A,B,C滿足$\overrightarrow{PC}$-$\overrightarrow{AC}$=2$\overrightarrow{AB}$,且$\overrightarrow{PA}$=λ$\overrightarrow{PB}$,則實(shí)數(shù)λ的值為( 。
A.2B.$\frac{2}{3}$C.$\frac{3}{2}$D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案