分析 (Ⅰ)由已知得PD∥OE,利用直線與平面平行的判定定理證明即可.
(Ⅱ)已知得AC⊥PD,AC⊥BD,由此能證明平面EAC⊥平面PBD.
解答 證明:(Ⅰ)∵ABCD是菱形,O是AC與BD的交點(diǎn)
∴O是BD的中點(diǎn);
連接EO.
∵E是PB中點(diǎn),O是BD的中點(diǎn)
∴EO∥PD.
根據(jù)直線與平面平行的判定定理可證明:
∴PD∥平面EAC.
(Ⅱ)∵PD⊥平面ABCD,AC?平面ABCD,
∴AC⊥PD.∵四邊形ABCD是菱形,∴AC⊥BD,
又∵PD∩BD=D,AC⊥平面PBD.
而AC?平面EAC,∴平面EAC⊥平面PBD.
點(diǎn)評(píng) 本題考查平面與平面垂直的證明,直線與平面平行的判定定理的應(yīng)用,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | (-∞,1) | C. | (-∞,$\frac{1}{2e}$) | D. | ($\frac{1}{2e}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com