銷售甲、乙兩種商品所得利潤分別是y1、y2萬元,它們與投入資金x萬元的關系分別為數(shù)學公式,y2=bx,(其中m,a,b都為常數(shù)),函數(shù)y1,y2對應的曲線C1、C2如圖所示.
(1)求函數(shù)y1、y2的解析式;
(2)若該商場一共投資4萬元經(jīng)銷甲、乙兩種商品,求該商場所獲利潤的最大值.

解:(1)由題意,解得,…(4分)
又由題意(x≥0)…(7分)
(不寫定義域扣一分)
(2)設銷售甲商品投入資金x萬元,則乙投入(4-x)萬元
由(1)得,(0≤x≤4)…(10分)
,則有=,
當t=2即x=3時,y取最大值1.
答:該商場所獲利潤的最大值為1萬元.…(14分)
(不答扣一分)
分析:(1)根據(jù)所給的圖象知,兩曲線的交點坐標為,由此列出關于m,a的方程組,解出m,a的值,即可得到函數(shù)y1、y2的解析式;
(2)對甲種商品投資x(萬元),對乙種商品投資(4-x)(萬元),根據(jù)公式可得甲、乙兩種商品的總利潤y(萬元)關于x的函數(shù)表達式;再利用配方法確定函數(shù)的對稱軸,結合函數(shù)的定義域,即可求得總利潤y的最大值.
點評:本題考查了函數(shù)模型的構建以及換元法、配方法求函數(shù)的最值,體現(xiàn)用數(shù)學知識解決實際問題,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

有甲、乙兩種商品,經(jīng)營銷售這兩種商品所能獲得的利潤依次是P(萬元)和Q(萬元),它們與投入資金x(萬元)的關系有經(jīng)驗公式:P=
x
5
,Q=
3
5
x
.今有3萬元資金投入經(jīng)營甲、乙兩種商品,為獲得最大利潤,對甲、乙兩種商品的資金投入分別應為多少?能獲得最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

銷售甲、乙兩種商品所得利潤分別是y1、y2萬元,它們與投入資金x萬元的關系分別為y1=m
x+1
+a
,y2=bx,(其中m,a,b都為常數(shù)),函數(shù)y1,y2對應的曲線C1、C2如圖所示.
(1)求函數(shù)y1、y2的解析式;
(2)若該商場一共投資4萬元經(jīng)銷甲、乙兩種商品,求該商場所獲利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有甲、乙兩種商品,經(jīng)營銷售這兩種商品所能獲得的利潤依次為Q1萬元和Q2萬元,它們與投入資金的關系是Q1=0.4x,Q2=-0.2x2+1.6x,今有10萬元資金投入經(jīng)營甲、乙兩種商品,為獲得最大利潤,對甲、乙兩種商品的資金投入應分別為多少?并求最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省泰州市高一(上)期末數(shù)學試卷(解析版) 題型:解答題

銷售甲、乙兩種商品所得利潤分別是y1、y2萬元,它們與投入資金x萬元的關系分別為,y2=bx,(其中m,a,b都為常數(shù)),函數(shù)y1,y2對應的曲線C1、C2如圖所示.
(1)求函數(shù)y1、y2的解析式;
(2)若該商場一共投資4萬元經(jīng)銷甲、乙兩種商品,求該商場所獲利潤的最大值.

查看答案和解析>>

同步練習冊答案