(本小題12分)
如圖,拋物線的焦點到準線的距離與橢圓的長半軸相等,設橢圓的右頂點為在第一象限的交點為為坐標原點,且的面積為
(1)求橢圓的標準方程;
(2)過點作直線交于兩點,射線分別交于兩點.
(I)求證:點在以為直徑的圓的內(nèi)部;
(II)記的面積分別為,問是否存在直線,使得?請說明理由.
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)如圖,橢圓:的左焦點為,右焦點為,離心率.過的直線交橢圓于兩點,且△的周長為.
(Ⅰ)求橢圓的方程.
(Ⅱ)設動直線:與橢圓有且只有一個公共點,且與直線相交于點.試探究:在坐標平面內(nèi)是否存在定點,使得以為直徑的圓恒過點?若存在,求出點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知直線上有一個動點,過點作直線垂直于軸,動點在上,且滿足
(為坐標原點),記點的軌跡為.
(1)求曲線的方程;
(2)若直線是曲線的一條切線, 當點到直線的距離最短時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知P為曲線C上任一點,若P到點F的距離與P到直線距離相等
(1)求曲線C的方程;
(2)若過點(1,0)的直線l與曲線C交于不同兩點A、B,
(I)若,求直線l的方程;
(II)試問在x軸上是否存在定點E(a,0),使恒為定值?若存在,求出E的坐標及定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知一條曲線C在y軸右邊,C上每一點到點F(1,0)的距離減去它到y(tǒng)軸距離的差都是1
(1)求曲線C的方程.
(2)是否存在正數(shù)m,對于過點M(m,0)且與曲線C有兩個交點A,B的任一直線,都有?若存在,求出m的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設橢圓的左、右焦點分別為,上頂點為,離心率為,在軸負半軸上有一點,且
(Ⅰ)若過三點的圓恰好與直線相切,求橢圓C的方程;
(Ⅱ)在(Ⅰ)的條件下,過右焦點作斜率為的直線與橢圓C交于兩點,在軸上是否存在點,使得以為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍;否則,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知某橢圓的焦點F1(-4,0),F(xiàn)2(4,0),過點F2并垂直于x軸的直線與橢圓的一個交點為B,且|F1B|+|F2B|=10,橢圓上不同兩點A(x1,y1),C(x2,y2)滿足條件|F2A|,|F2B|,|F2C|成等差數(shù)列.(1)求該橢圓的方程;(2)求弦AC中點的橫坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com